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CCNHA. This wide disparity between mineral soils and peatlands and the spatial pat-
terns of SOC storage in these environments are important considerations in studies
involving terrestrial and atmospheric C fluxes in the lake states.

More work is needed to reduce the uncertainty currently associated with estimates
of SOC pools in northern forests. The techniques that we used are applicable to
broader areas, and could rapidly move our understanding of C storage in terrestrial
ecosystems forward. Our approach is based on environmental correlation between
soil properties and landscape variables and results in continuous, rather than discrete,
maps of SOC, providing a more realistic representation of spatial patterns of varia-
tions within the soil continuum. Further work is also needed to ascertain the geo-
graphic scope of this soil-landscape model. Assuming that soil-landscape conditions
at the CCNHA are representative of the Anoka Sand Plain, this soil-landscape model

could conceivably be applied to this entire geomorphic region with some additional
refinement.

M CHAPTER 13

Shallow Landslide Delineation |
for Steep Forest Watersheds Based |
on Topographic Attributes and '
Probability Analysis

Jinfan Duan and Gordon E. Grant

13.1 INTRODUCTION

Mass movements triggered by rain and rain-on-snow events have been a major con-
cern in forest management in many parts of the world (Sidle et al. 1985). Mass
movements are dominant sources of sediment and affect the geometry and distur-
bance regimes of channel and riparian areas in steep forested lands (Swanson et al.
1987). Landslide-caused damage exceeds $1 billion annually in the United States
(Schuster and Krizek 1978) and poses threats to life. Downstream effects of mass
movements also affect water quality, water quantity, and aquatic habitat.
Landslides result from a combination of interacting factors that include topogra-
phy; soil thickness, conductivity, and strength properties; rainfall intensity and dura- |
tion; subsurface flow orientation; bedrock fracture flow; and vegetation surcharge '
and root strength (Montgomery and Dietrich 1994). These controlling factors are
unevenly distributed in space and time, making quantitative assessment of landslide
risk complex and difficult.
Mapping or delineating areas susceptible to landslides is essential for land-use
activities and management decision-making in hilly and mountainous areas. Ideally,
land-use activities, such as forest harvesting and road construction, should avoid vul-
nerable slope areas. Sites prone to mass failures can be identified by analytical and
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empirical methods. A variety of approaches have been used in landslide mapping and
can be classified into five categories: on-ground monitoring, remote sensing, factor
overlay, statistical models, and geotechnical process models (Schuster and Krizek
1978). Each of these methods has its value for certain applications and disadvantages
for other objectives (Ward et al. 1982, Montgomery and Dietrich 1994).

A computer-based framework incorporating topographic, vegetation, and soil
information with geotechnical models is a useful way to locate unstable areas (Ward
1976, Okimura and Ichikawa 1985, Wu and Sidle 1995, Montgomery and Dietrich
1994). The recent trend of using spatially explicit approaches is largely due to the
recognition of the importance of accounting for spatial heterogeneity, and newly
developed tools and technology, especially geographic information system (GIS) and
related remotely sensed imagery, and digital terrain analysis, which make it possible
to consider small-scale heterogeneity. Incorporating digital terrain models into land-
slide prediction explicitly accounts for the importance of both topographic form and
landscape position in slope stability. Recent work has demonstrated that both form
and position represent first-order controls on landslide initiation (Dietrich et al. 1986,
1993, 1995, Montgomery and Foufoula-Georgiou 1993, Montgomery and Dietrich
1994, Zhang and Montgomery 1994).

Other studies have used spatial terrain data in regional stability analyses in con-
junction with process-oriented models. Ward and co-workers (Ward 1976, 1985,
Ward et al. 1978) delineate possible shallow landslide areas based on the uncer-
tainties of control variables, but ignored the strong topographic control of shallow
landslides by flow accumulation and convergence. Wu and Sidle (1995) developed
an event-based slope stability model for forest watersheds, but the model is com-
putationally intensive. Montgomery and Dietrich (1994) coupled near-surface flow
characteristics with a slope stability model, but assumed steady-state rainfall and
uniform soil and vegetation properties. Later work using the same model (Dietrich
et al. 1995) explicitly accounted for both spatial variation in soil depth and the
influence of root strength on slope stability. Their work did not, however, address
the influence of temporally varying precipitation duration and intensities on slope
stability.

In this chapter, we expand on these previous efforts to present a quantitative
approach for evaluating both spatial and temporal factors influencing shallow land-
slides, using a more probabilistic framework than has previously been used. Topo-
graphic attributes from a digital elevation model (DEM) are linked with a
process-based geotechnical equilibrium model. In this model, the high variability of
factors controlling landslide occurrence and temporal variability of subsurface satu-
ration are treated using probability analyses. Our intent is to explore an alternative
representation of the uncertainty and variability inherent in simulating climatic and
topographic controls on landslide initiation. This representation includes a dynamic
simulation of rainfall intensities and treats the spatial distribution of key soil param-
eters stochastically, using a Monte Carlo simulation approach.

The following sections describe the study area, the theory underlying the model,
model parameterization, and results of testing it using data on observed landslides in
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a 64-km? watershed in western Oregon. We conclude with a discussion that consid-
ers the advantages and disadvantages of this approach with respect to other models
that predict landslide location and frequency.

13.2 STUDY AREA DESCRIPTION

We tested the model against landslide inventory data from the H. J. Andrews Exper-
imental Forest (hereafter HJA) in the western Cascade Range of Oregon. The HIA
includes the 64-km? drainage basin of Lookout Creek, a tributary of the Blue and
McKenzie rivers (Figure 13.1). Elevations range from 410 to 1630 m.

Lower elevations of the HJA are underlain mainly by Ollgoceng and lpwer
Miocene volcanic rocks composed of tuffs, ash flows, and stream deposits. In higher
areas, bedrock is composed of andesite lava flows of Miocene age ’and of younger
High Cascade rocks. Stream erosion, a variety of types of landshdmg,. and glacia-
tions have created a deeply dissected, steep landscape. Soils developed in these par-
ent materials are mainly Inceptisols with local areas of Alﬁsolsb and Spodosols. Field
estimation of soil depth over the Andrews Forest from soil pits fpund a pattern of
thick soils in the upper two-thirds of the basin, which is und;rlaln by ‘deep-seated
earth flows, with thinner soils in the lower elevation zone. Thick all'uwum l?ordgrs
many of the lower-elevation streams (Dyrness 1969) (Figure 13.2). Soil depth is quite

I OREGON

Figure 13.1. Location of the H. J. Andrews Experimental Forest, comprising the Lookogt
Creek watershed. Shaded areas show gauged watersheds with long-term stream flow and cli-
mate observations,
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Figure 13.3. Vegetation zones in the H. J. Andrews Experimental Forest.

Figure 13.2. Soil depth in the H. J. Andrews Experimental Forest.

variable locally and, because of the extensive mass movement history of the area,
does not always conform to topography.

The maritime climate has wet, mild winters and dry, cool summers. At the primary
meteorological station at 430 m elevation, mean monthly temperature ranges from
near 1°C in January to 18°C in July. Average annual precipitation varies with eleva-
tion from about 2300 mm at lower elevations to over 3500 mm at upper elevations,
falling mainly from November through March. Rain predominates at low elevations;
snow is more common at higher elevations. Highest stream flow occurs generally
from November through February during warm rain-on-snow events.

When it was established in 1948, the Andrews Forest was covered with old-
growth forest. Douglas fir, western hemlock, and western red cedar dominate lower
elevation forests. Upper elevation forests contain noble fir, Pacific silver fir, Douglas
fir, and western hemlock (Figure 13.3). Before timber cutting began in 1950, about
65% of the Andrews Forest was in old-growth forest (400-500 years old) and the
remainder was largely in stands developed after wildfires in the mid 1800s to early

uttings over about 30% of the f}nd:ews For-
est have created young plantation forests varyir_lg in composmon, stockirfl)% le;:i; a.;?lfjl
age (Figure 13.4). Old-growth forest stands with dominant trees over 1d)y0ri oy
still cover about 40% of the total area. Mature stands (IQO to 149 years old) mge v
ing from wildfire cover about 20%. Wildfire was the primary d1§turb§nce md e
ural forest; windthrow, landslides, sites of concentrated root rot infection, an:

stream channel erosion were secpndary disturbances.

1900s. Clear-cutting and shelterwood ¢

13.3 METHODS AND DATA SOURCES

the infinite slope model was coupled with a prob-

i landslide-prone areas, _  pro
s : andscape parameters. This approach is dis-

abilistic analysis of precipitation and 1
cussed in the following sections.
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Figure 13.4. Land-use history in the H. J. Andrews Experimental Forest.

13.3.1 infinite Slope Model

The factor of safety .(FS) is commonly used as a quantitative expression of the haz-
ard index qf landslide initialization. It is customarily expressed as the balance
between resisting and driving forces such that

FS = Resistance of the soil to failure (shear strength)
Forces promoting failure (shear stress)

(13.1)

Fn equilibrium analysis, an FS of unity is a critical condition and would indicate
imminent failure, and an FS greater than one indicates a stable condition. The infinite
slope method is a popular slope stability analysis tool because it is simple and appli-
cable to many shallow landslides. Generally, the infinite slope model does not ade-
quately predict deep-seated, rotational failures, but is appropriate for failures of a soil
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mantle that overlies a sloping drainage barrier that may be bedrock, or a less perme-
‘4 able and well-compacted soil layer (Hammond et al. 1992).

A variety of slope stability models characterize stability using factor of safety.

The infinite slope model is widely used (e.g., Ward 1985, Wu and Sidle 1995, Mont-
:_E- gomery and Dietrich 1994). It can be written as

_ CHAC + {[(D = h)Ym + h(fuwe = Yu)] + Wi} cos f tan ¢

bs [(D = Ay + WY + W] sin B

(13.2)

4 where C is soil cohesion; AC, is root strength; W, is the surcharge weight of vegeta-

tion; Y, and 7, are the unit weight of soil at field moisture content and saturation,

respectively; D is the soil depth normal to the slope; h is the normal saturated depth;

pis the surface slope; and ¢ is the internal frictional angle.

13.3.2 Parameter Estimation from Probability Analysié

{ Hillslopes commonly have a variety of rock types, soils with different properties

and thicknesses, and vegetation with different surcharges and root strengths. Deter-

g ministically quantifying all these controlling factors is impossible for regional haz-

ard mapping. Quantifying error and determining error sources and uncertainties are
difficult, if not impossible. Many model equations may be inappropriate, because
they may only be used for defined boundary conditions at specific scales: Equation
13.2, for example, is not valid for deep-seated earthflows. Even if measurement

errors are assumed negligible and back-calculation of parameters is well defined,
point measurements (e.g., strength tests) cannot effectively describe the larger-scale

heterogeneity of the measurable parameters, such as frictional angle and cohesion.
Because the parameters in Equation 13.2 are inherently uncertain, a probability

{ of failure for each hillslope element must be estimated (Ward et al, 1982) rather

than predicted deterministically. In fact, the predictions of landslide occurrence
from simple deterministic models actually represent statements of probability
(Montgomery and Dietrich 1994). Some parameters that are highly variable in

4 space and time, including soil and root strength, soil depth, and saturated depth,
4 can be considered as random variables or assumed to be uniform (as we do for all
{ but saturated depth). Other parameters, such as slope angle and unit weight of soil,
A4 can be estimated with greater accuracy from terrain analysis and/or GIS software,
4 or from field surveys. In some landscapes, factors such as soil depth are strongly
{ correlated with topography (i.e., Dietrich et al. 1986, 1995); however, this assump-
{ tion is less valid in our landscape because of extensive mass movement and glacial

overprinting.

Two important assumptions simplify the problem. First we treat the highly vari-
able parameters as independent, following Ward et al. (1982), while recognizing that
some of the stochastic variables in the infinite slope model are correlated (Hammond

{ etal. 1992). There is no good way to handle this dependency quantitatively: Typi-

cally, soil cohesion and friction angle are inversely related (correlation coefficient of
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—0.2 to —0.85) (Cherubini et al. 1983), while friction angle and soil density are posi- S8
tively related (Hammond et al. 1992). Although Hammond et al. (1992) adopted j' !
methods using transformed variables to treat the correlations between soil cohesion ‘G
and friction and between friction angle and soil density, further research is needed to '.':_ '

evaluate the statistical soundness and general applicability of this approach.

The second assumption involves using prior assigned distributions for certain
parameters. In this chapter, all variables except saturated depth are based on an
assumed uniform distribution (Ward et al. 1978) (Table 13.1). Saturated depth is E |

affected by various factors, such as precipitation, evapotranspiration, vertical
recharge, and deep ground water seepage, that are controlled by soil and vegetation

characteristics. Based on the concept of the time—area curve and hillslope unit hydro- &
graph (lida 1984), Barling et al. (1994) derived a quasi-dynamic relationship & : . i :

@ Figure 13.5. Root strength change after forest cutting. Only the mean is shown; variance 1S
@ assumed constant for different years after cutting.

between recharge rate and the saturated depth as

"
K, tan

h(t) =

recharge rate; a(t) is the upslope drainage area divided by the downward width of the
element in this case; and K is the saturated conductivity of soil.

The assumption of uniform recharge rate is only a simplification of the complex
behavior of the soil-vegetation—atmosphere interface. If we further ignore canopy
interception and evapotranspiration loss, r can be viewed as the precipitation mean
intensity, /I, which we define as an exponential distribution (e.g., Beven 1987):

e inte
e (13.4)

JfUrn) -

where f{],,) denotes a probability density function and Ap is mean storm intensity, in
mm/h,

TABLE 13.1 Stochastically Treated Parameters and Their Assumed Probability
Distributions

Random Variable Probability Distribution
Soil depth Uniform
Soil cohesion Uniform
Internal friction angle Uniform

Root strength
Biomass surcharge
Precipitation intensity

Uniform, mean dynamic change with age
Uniform, mean dynamic change with age
Exponential

5 a0 (13.3) '_
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where A(f) denotes the depth of saturated throughflow at time ¢; r is the constant ;_ , 13.3.3 Effect of Vegetation

1 :_ Vegetation influence on slope stability is also an important factor in steep forested
@ watersheds, especially through root strength (Sidle 1992). Tree roots provide lateral
1 support and vertically anchor and buttress the soil mass (Hammond z?t al. 1992). A
1 sigmoid curve was used to model root cohesion during regrowth (Sidle 1992};_an
& exponential curve was used to model the decay of residual root strength following
@ tree harvesting (Sidle 1992) (Figure 13.5). The general shape of conceptual root

@ strength regeneration is
C.= Coux [(@ + be™) ' + di] (13.5)
@ and the root deterioration is
Coa = Cou €™ (13.6)
i -_ Total root strength is given as
AC=C,+Cy (13.7)

where a, b, d, m, and k are all parameters (Sidle 1991, 1992) and C is the maxi-
mum root strength. : e

Biomass surcharge is generally not a significant factor in landslide initiation
(Hammond et al. 1992). We include it, however, because it is explicitly inﬂuenced‘by
both timber harvest and tree regrowth and may affect the stability threshold at which
sliding occurs on marginally stable sites. Different functions have been used for c_al-
culating biomass after harvesting. A function similar to the root regrowth Equation
(13.5), as described by Sidle (1987), is used here (Figure 13.6):
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Figure 13.6. Biomass surcharge after forest cutting. Only the mean is shown; variance is " !

assumed constant for different years after cutting.

W]‘ = Wmax [(aw + bwe-\kwl)-l + d\ﬂ']

where W, is the biomass over the element at  years after cutting; W, is the maxi- '

mum weight trees can grow in unit area; and a,, b, ¢,, and d,, are constants. As indi-

cated by Sidle (1992), the model assumes that tree surcharge is uniformly distributed
across each element.

Based on the above equations characterizing the changing vegetation factors after

harvesting, we obtain the means of the uniform distribution for onsite root cohesion
and biomass surcharge. The variances of these two distributions are treated as con-
stants equal to one-tenth of the normalized root cohesion and biomass.

13.3.4 Terrain Analysis and Climate Data Acquisition

The data and parameters used for this investigation were derived from or obtained by
existing Level 1 DEM, aerial photograph and field surveys. The DEM data stored in
the ARC/INFO GIS have a resolution of 30 x 30 m and the slope and topographic
convergence index were computed for each pixel using internal GIS functions.
Although considering flow as multidirectional out of each pixel is more sophisticated
conceptually, the GIS tool we used incorporated only a single-direction algorithm.
Because this algorithm accumulates drainage area only along cardinal directions and
45° to those directions, it inevitably results in the “striping” artifacts visible on Fig-
ures 13.8 and 13.9. Newer flow-routing algorithms, like those discussed in Chapters
3 and 5, may eliminate this problem.

The soil and vegetation characteristics and the land-use history were rasterized to
the DEM resolution in ARC/INFO. For the seven soil types that occupy most of the
area of HJA, parameters of soil strength and saturated conductivities were derived
from field measurements (Table 13.2), and the average of the known seven types was
used for the remaining unmeasured types. The error introduced by this method is lim-
ited because of the small area involved. Although there are three vegetation zones at
HJA, we used the same vegetation parameters for all types in the random simulation

139 &
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' ] Figure 13.7. General simulation procedure.
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Figure 13.8. Potential shallow landslide area in the H. J. Andrews Experimental Forest under
old-growth condition.
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wEls 2 g because the root strength and biomass surcharge values were similar among types
Blacsg (Table 13.3).
- Storms were defined as periods with a mean precipitation intensity greater than 1
% % mm h™', separated by at least 12 h with precipitation less than 1 mm h™! (Beven 1987).
£l3aR § We analyzed precipitation records for the climate station that has the longest history
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3 i storms fitting the above criteria had an average intensity of 1.35 mm b
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s |29 &8 13.3.5 Monte Carlo Simulation and Probability Derivation
-0 oo
;E % The simulation of probability of landslide occurrence relies on spatially distributed
2 % B information of small elements. From terrain analysis and GIS, topographic attributes
P 213 § g § such as slope, flow accumulation and topographic convergence index can be derived
= Y from the DEM for each element. Overlaying the distributed elements with a GIS
- 3 database helps with the derivation of other land surface or near-surface characteris-
E =34 tics, such as soil, vegetation and land-use history (Figure 13.7).
= © 2% For each element, 1000 random simulations were produced that represented the
2 L3 Ty ranges in probable value of saturation, soil and root strength, and biomass, using the
N ‘;% _;w'% éz" El appropriate probability distributions (Tables 13.1 and 13.2). The variables in Table
= glgs g 13.1 were treated as random variables, which means we randomly simulated them,
= 2l g‘ E § -% _§ using the assumed probability distribution and the mean and variance calculated
g 3 g 2 E%s 2 :é) 2 from the terrain and precipitation data. For each simulation set of these variables, a
LR N factor of safety was calculated based on the geotechnical model (Equations
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13.2-13.4). Then the mean (lgs) and variance (Ogs) of factor of safety from the §
Monte Carlo simulation for each element were computed. By assuming a normal dis-
tribution for the factor of safety (Ward et al. 1982), the probability of failure, defined
as the probabilities of factor of safety less than and equal to 1 for each element, was §

calculated using the normal probability distribution:

o 1(x—pgs |2
P(FS < 1.0) = L T [~2( = )]dx (13.9)

which can be solved numerically. Another way to construct the probability of failure
is to use the ratio of the number of sets with computed FS less than or equal to one

divided by total number of Monte Carlo simulation sets. The latter has the advantage

of not assuming a distribution for factor of safety. Our tests demonstrated that when
large numbers of simulation sets are computed, there is little difference in the result-
ing slide maps between these two methods.

The 1000 simulations for each element were constructed based on the random

parameters of soil, vegetation, and precipitation characteristics, using Equations 13.3
and 13.4. The probability of failure was computed for each element using the simu-
lation. Two conditions were considered: First, we analyzed probability of failure for
old-growth conditions; second, we examined the probability of failure at 12 years
post clear-cutting for the whole watershed, when root strength is usually at a mini-
mum and the landscape is, therefore, most unstable following cutting.

We qualitatively define the probability of slope movement as extremely low (P <
0.2), low (0.2 < P < 0.4), moderate (0.4 < P < 0.6), high (0.6 < P < 0.8), and
extremely high (0.8 < P < 1.0). This relative ranking of stability of hillslope elements
does not have an absolute timescale attached to it. However, since the 36-year cli-
mate record used to generate the precipitation input incorporates events ranging up to
approximately a 100-year return period, the implied timescale is of one to several
centuries in length. This corresponds closely with the interpreted return period of
sliding for topographic hollows with mature forest cover of several hundred years in
this area (Swanson et al. 1987).

13.4 RESULTS AND DISCUSSION

The two modeled vegetation conditions yielded dramatically different patterns of
landslide probabilities (Figures 13.8, 13.9). Under old-growth conditions most of the
hillslopes are stable and only scattered areas have a high potential for shallow land-
slides (Figure 13.8). Under old-growth conditions, 98% of the area is stable; 92% of
the areas is ranked extremely low in probability of failure (Figure 13.10). Only 1% of
the uncut forest has a high probability of sliding and none is rated extremely unsta-
ble. Under clear-cut conditions, on the other hand, only 76% of the area is rated in a
stable state; the area with high failure probability has increased to 11%, with 3% of
the area ranked as extremely unstable under the recent clearcut condition. Under both
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'; Figure 13.9. Potential shallow landslide area in the H. J. Andrews Experimental Forest under
L condition that the whole drainage is clear-cut.

scenarios, the proportion of area in each category declines exponentially with
@ increasing landslide risk.

Historically, approximately 137 landslides occurred at the HJA (Figure 13.11) (F.

: " Swanson, unpublished data on file at Pacific Northwest Research Station). Of the‘se
[ 137 slides, 71 (52%) are road-related and 35 (25%) are clear-cut-related, with
| another 31 (23%) in forest. This inventory clearly demonstrates the acceleration of
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Figure 13.10. Percentage of areas under different slide potential categories for old growth and
clear-cut.
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the modeled and observed landslide sites based on a point registration that treats any

landslide site as a single point in the spatial database,

’ c?v;ra]], the model does not predict the observed sliding behavior very well. Many Ti:'
andslides occurred at elements mapped as low-probability areas. These discrepancies

may be due to several factors, which point to the limitations of this model or landslide

models in general for accurately predicting slide locations. A key limitation may be

errors relatcd‘ 10 accurately pinpointing landslide sites as points in GIS coverages. Ave
age areas for individual slides are approximately 200-300 m?, assuming an ave%a .esh'dr.
deﬁplh of 2 to 3 m (Swanson and Dymess 1975); so that the slide area is less than fhe 908
m* (30 X 30 m) “window” generated with 30 m square-grid DEMs. Given the unc
Lam%res a_tta;hed to both accurately locating field-inventoried slides oﬁ the DEM asnwelﬁ
4s pinpointing them with the model, a more robust test might utilize a larger (e.g., 3 ><63

typically display the topqgraphic detail that drives landsliding (Zhang and Montgomery
1994).. Tl.le single-flow-direction algorithm used to calculate drainage area also imposes
an artificial structure that may influence predictions in unknown ways,
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E : Figure 13.12. Potential shallow landslide area in the H. J. Andrews Experimental Forest
A under current stand conditions.

More importantly, this model does not incorporate geologic information, which

. plays an important role in the geographic pattern of shallow landslides. The model

overestimates the landslide potential for high-elevation areas of the HJA, where com-
petent andesite lava flows underlie the hillslopes. Soil developed from this rock type
typically has a very high rock content and therefore does not build the high pore pres-
sures necessary to trigger landslides. Another consideration is that many landslides
occur during rain-on-snow events, which typically occur in lower to middle elevation
areas. The model does not consider that high-elevation areas may have snowpacks
that persist through storms (Swanson and Dyrness 1975). Nor does it explicitly con-
sider the contribution of roads and associated altered drainage patterns to slope sta-
bility. Finally, 50% of the landslides observed within the 40-year inventory period
occurred during two storms in the winter of 1964-65. The climatologic conditions
necessary to trigger major episodes of landsliding are probably underrepresented by
the probabilistic simulation of precipitation.

TABLE 13.4 Percentage of Observed Slide Sites and Delineated Probability for
Different Land-Use Categories

Extremely Low Low Middle High Extremely High
Road 60 215 13.8 3.1 1.5
Clear-cut 67.6 8.8 20.6 29 0
Forest 62.5 31.3 0 6.3 0




i i.e., indivi or longer-
Predicting slide frequencies, either at an event (i.e., individual storm) g

Other mass movements, such as earth flows, are present at HJA, in addition to § ? . . g
: . tcrm (i.e., multiyear) timescale, however, may require better representation O

shallow debris slides. The infinite slope model used in this project is valid only for & : ey much to transient

shallow landslides and not for dccp-sgated earth flows. Othlzr iypes of topogr:ptﬁ- § matic forcing functions, since landslide mman(::dm ;zu-t?nc;ﬁo?,sms,'rhe theoretical

cally controlled representations are needed to delineate deep slides. 4§ precipitation intensities as to average or;:;z;n I; is : first attempt to explicitly incor-
Because of these factors, agreement between the model and inventory data is only #§ distribution of precipitation events utill d ;:(rie models. The increased value of this

fair. Future models for this area must explicitly consider the effects of geology on soil § porate a more detailed l'lyd_m_]'c'gy ou la?: : lver is ha.r(;l to demonstrate because all

strength and hydraulic conductivity. A simple partitioning of the HJA basin by geology § approach in terms of Pl'edw“."’e power, howe bséure any incremental gains. Future

alone gave much better agreement with actual slide data (Swanson and Dyrness 1975). § the other sources of unc:f:rtamty and Eve O of landslide frequencies at both event

This raises the possibility that model performance might be improved if geologic vari- 4 work should focus on testing model predictions :

ation were explicitly considered in the model, perhaps by defining ranges for soil cohe- § and decadal timescales.

sion based on geology. However, poor resolution of soil mapping due to dense forest |

cover contributes to uncertainties in defining soil and geological properties, however. &

413.6 CONCLUSIONS

4 The model described here explicitly considel::s the SPﬁﬁtg"'cti‘;fZ?iﬁ;:{olnmg:::ﬁ
4 characteristics, such as soil and root strength, USIRG 4 s tin;'mg, e
The relatively poor fit to the observed data, together with uncertainties as to how to 4 itation events, the most influential variable .Ozljfdszgsﬁirfgl};zb{mon.The advan-
interpret goodness-of-fit in the first place, raises interesting questions regarding how 4§ also stochastically treated based e the(?rellc ffeii' a less biased way of distributing
mixed dynamic and probabilistic models like this one, or other more deterministic § tage of the probabilistic approach is e ma){n(f)hether this necessarily results in an
models (i.e., Montgomery and Dietrich 1994), should be used in management appli- | § inherent uncertainties across }he 1a_ﬂd§0ape'1 tion of slides remains to be seen.

cations. Use of topographically driven landslide models in land-use managementis 4 increase in ability to predict either uming ot Octiod is strongly influenced by terrain-
still rather new. Increasing concern about accelerated risks from landsliding follow- 4 Asexpected, this tOPOgFaphlcally explicit m;ur_based methods, single flow direc-
ing forest harvest, however, is prompting managers to look for more sophisticated 4 analysis methods (€.g., gnd-'basgcl versus Ftﬁﬂ ). Different terrain-analysis methods
tools to predict location and probability of failures. Understanding the strengths and 1§ tion versus multiple flow dissction ipE— d shapes that reflect different topo-
limitations of these models is therefore crucial. 4 produce distributed elements of different s1§e§ a‘nna ; al?r:a hence Iandslide probabil-

Both deterministic and probabilistic models must address the inherent uncertainty 4 graphic attributes, such as slope, aspect, atr; 'raﬁueices of different terrain-analyses
in predicting parameters controlling slide initiation; these parameters include both § ity. Future research should also exP].ore e ;nl‘dc N :
climatic and topographic variables. Measures of model success can include the spa- § methods, scale, and DEM data quality on landsl
tial pattern of slides, the timing with respect to triggering storms, and the overall slide
frequency integrated over multiple years or decades.

In general, the success rate for predicting slide location, as measured against
observed slide locations, appears to be greater for the more deterministic models.
Even simple models that incorporate the strong topographic controls on landslide
location (i.e., convergent topography and hillslope gradient) appear to predict the
overall spatial pattern of slides rather well, where sliding is primarily controlled by
topography (Montgomery and Dietrich 1994, Dietrich et al. 1995). These models
have been less well-tested in terrain such as the H. J. Andrews, where deep-seated
earth flows introduce other factors controlling sliding (i.e., long-term mass move-
ment history) that are not well-represented by topography. The Monte Carlo
approach described here does less well, perhaps because the key variables influenc-
ing slide initiation that were simulated, such as soil and root strength, are not truly
random but are topographically controlled as well. Land-use decisions requiring
maps that broadly predict landslide risk and slide-prone sites would do well to rely
on the more deterministic models, as long as underlying assumptions of mechanisms
responsible for slide initiation were not violated.

13.5 IMPLICATIONS FOR MANAGEMENT AND FUTURE MODELING
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