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Abstract.—A slope stability model employing Digital Elevation
Model (DEM) data was used in a Geographic Information System
(GIS) to predict landslide susceptibility in a large region of the H.J.
Andrews Long-Term Ecological Research (LTER) site, located in the
Western Cascades of Oregon. To assess the uncertainty of the final
output, several different, but equally probable, versions of the input
DEM were created throu g h the addition of random, spatially
autocorrelated noise (error) files. The DEMs were then processed to
produce a family of slope stability maps from which the uncertainty
effects of DEM elevation error upon the final susceptibility index
could be assessed. The slope stability model itself involved the
overlay of rock strengths with slope classes to establish landslide
susceptibility indices. The inherent nature of error in DEMs used for
modeling slope stability, coupled with much of the Pacific Northwest's
commercial timber being located in mountainous terrain, makes this
an intriguing problem to solve. The ability to understand the resultant
uncertainty due to elevation error when applied to the model has the
potential to facilitate improved natural resource management
decisions in relation to harvesting and subsequent slope stability.

INTRODUCTION

The US Pacific Northwest contains some of the most productive temperate
forests in the world and timber harvesting has been a primary land use in the area
for over 100 years. Because most of the commercial timber is in mountainous
terrain, such land use activities tend to decrease slope stability and therefore
increase the rate of mass movements. One of the major concerns associated with an
increase in such movement is the cumulative effects it has on the entire watershed—
such as decreased water quality, loss of spawning habitat and organic matter, and
debris jams that may break during peak flows, thereby scouring channels and
destroying riparian vegetation. Thus, the ability to predict slope failure is a valuable
resource in determining the impacts of forestry practices (Swanson et. al. 1981).

While methods such as ground and aerial surveys can aid in locating existing
and potential landslide areas, they also suffer several disadvantages. For example,
in the Western Cascade range, ground surveys are difficult to carry out since
accessibility is a major problem in a region characterized by steep slopes and very
few roads (Swanson et al. 1981). This effectively reduces the amount of terrain
that can be covered, which in turn may lead to an underestimation of landslide
occurrences.
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Similarly, there can be difficulties in obtaining suitable aerial photography as a
result of highly variable weather and climate conditions, seasonal considerations,
and problems with photographic interpretation. Unfortunately, landslide
inventories in the Western Cascades are best conducted during the winter rainy
season and/or immediately after major storms when cloud cover is most prevalent.
Also, landslides may be too small to be detected by aerial photography (Swanson
and Lienkaemper 1985)1 or difficult to identify because they are either hidden under
the forest canopy (McKean et. al. 1991), masked in shadow by steep, narrow
ridges and tall, dense forest vegetation (Skaugset 1992); or located on streamsides.

Alternatively, we can use Geographic Information Systems (GIS) to help model
landslide susceptibility by applying the critical factors used in determining slope
stability. While this approach permits large-scale evaluation of the landscape, it
suffers from a lack of knowledge about the uncertainty of the final output resulting
from errors occurring in the parameters used to model potential slope failure. The
purpose of this paper is to describe how the application of a slope stability model
based on DEM—derived values was enhanced to assess the uncertainty in predicting
slope failure in the H.J. Andrews Long-Term Ecological Research (LTER) site.
The model overlays slope gradient values with a generalized geology map to yield
landslide susceptibility classes.

In order to apply the procedure to the slope stability model, the uncertainty
assessment technique described in Hunter and Goodchild (1995) was employed in
which different, but equally probable, versions of the source DEM were created
through the addition of random, spatially autocorrelated elevation error files. The
DEMs were then processed to produce a family of slope stability maps from which
the effects of error in DEM elevations upon the final landslide susceptibility indices
could be assessed. This paper is structured such that a description of the
uncertainty model is presented next, followed by discussion of the application of
the method to the slope stability model, and finishing with some closing remarks.

DISCUSSION OF THE UNCERTAINTY MODEL

Before discussing the uncertainty model used in this research, some explanatory
remarks are required regarding the term 'uncertainty' itself. In general terms, it
denotes a lack of sureness or definite knowledge about an outcome or result and, in
the context of GIS, we suggest there is a clear distinction between 'error' and
`uncertainty', since the former implies that some degree of knowledge has been
attained about differences between actual results or observations and the truth to
which they pertain. On the other hand. 'uncertainty' conveys the fact that it is the
lack of such knowledge which is responsible for our hesitancy in accepting those
same results or observations without caution, and the term 'error' is often used
when it would be more appropriate to use 'uncertainty'.

The uncertainty model that has been used here is a version of the one originally
developed by Goodchild et al. (1992), In general terms it may be defined as a
stochastic process capable of generating a population of distorted versions of the
same reality, with each version being a sample from the same population. The
traditional Gaussian model (where the mean of the population is an estimate of the
true value and the standard deviation is a measure of the variation in observations)
is one attempt at describing error, but it says nothing about local variation or the

282



processes by which it has accumulated. The model applied here is viewed as an
advance on the simple Gaussian approach since it has the ability to show spatial
variation in uncertainty, as well as the capacity to include in its realizations the
probable effects of error propagation resulting from the various algorithms and
processes that have been progressively applied to the data sets employed. By
studying different versions of the final output, it is possible to see how differences
in input affect the outcome, and in essence the purpose of the model could be
described as an attempt to "find a Gaussian distribution for maps".

Elsewhere, in a paper by Hunter and Goodchild (in review), it has been argued
that while it is possible to distort or perturb a data set according to an error
description (such as the Root Mean Square Error (RMSE) value for a DEM)
without any consideration of the likely spatial autocorrelation between point sample
elevations, the process may be stochastic but inevitably lacks a certain
`truthfulness'—since adjacent elevations in a DEM which are otherwise similar in
value can be severely distorted, thereby creating large pits and peaks which often do
not intuitively occur in nature. This approach produces what are known as 'random
maps'.

On the other hand, the assumption of complete spatial dependence between
neighbouring points produces realizations of a DEM which appear 'truthful' but not
stochastic, since elevations are unnaturally constrained to maintain their relative
differences to each other and the introduction of a noise (or error) component has
the effect of moving all DEM elevations up or down by a constant amount. Hence,
there is a need to find the value in the domain 0 < p < 0.25 (where p is a measure of
spatial autocorrelation) which meets the requirements of being both stochastic and
`truthful'. The limit of 0.25 ensures stationarity (as discussed in Cliff and Ord,
1981, p. 147) when the Rook's case is used to test a cell's elevation against its four
neighbours sharing a common edge.

Application of the uncertainty model consists of four stages (as described more
fully in Hunter and Goodchild, 1995), with the first stage requiring the user to
combine whatever data, processes and models are needed to generate the desired
output—in other words, applying the GIS as would normally occur without any
consideration of uncertainty. Secondly, the parameters necessary for the realization
process are determined by reading system variables associated with the source
DEM, such as the number of rows and columns in the data file, the cell size, and
geo-referencing details. These will be required later when the elevation noise files
are transformed to agree with the original DEM. An error estimate for the DEM
will also need to be identified and this is usually a global value of the elevation error
present, such as the RMSE as supplied by the DEM producer.

Whilst not a direct step in the realization procedure, the noise files to be
employed are usually pre-computed and permanently stored in the system for future
use. To date, it has been considered sufficient in the applications tested for about
ten files to be held against each p value, with the default values being p = 0.0, 0.05,
0.10, 0.15, 0.20, 0.21, 0.22, 0.23, 0.24, 0.245, and 0.249. As for the maximum
value of p employed (0.249), experience has shown there is little to be gained from
using values higher than this since the realization process becomes so constrained
that there is no discernible difference between the realized maps and the original
product.
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In stage 3 of the methodology, it is expected that users will want to see a small
number of trial realizations and the default values of p listed above are applied. A
single realization for each value is obtained by first applyin g the parameters derived
from stage 2 to geo-reference and transform the coordinates of the noise grid.
Next, the error estimate is applied to map the noise values from a normal
distribution of N(0,1) to N(0,RMSE). This adjusted noise file is added to the
source data to produce a realization to which the commands employed to create the
original GIS product are 2.7olied. The realized maps a! ' the differences between
the realizations and	 tout can be	 in map or graph form.
Finally, in stage 4 of the proce,	 user focuses on a specific p value in the
0 < p < 0.25, and applies a series of noise realizations to produce a set of distorted
DEMs for which a family of outputs are created. These enable assessment of the
uncertainty in the final product due to elevation error in the ori ginal DEM.

THE CASE STUDY AND DISCUSSION OF RESULTS

The H.J. Andrews Experimental Forest is located approximately 80 km east of
Eugene, Oregon. Lookout Creek Basin (the test area) lies within the forest and
drains nearly 6400 hectares in the Western Cascade Range. The overall site was
established as an Experimental Forest in 1948 after which trial harvests took place
and concomitant road construction occurred throughout the 1960s. Since 1970,
site emphasis has shifted to ecosystem research and the levels of timber harvesting
and road building have been reduced. The upper areas of Lookout Creek Basin are
formed from lava flows ranging in age from 3 to 13 million years, while lower
areas are underlain by older (14 to 25 million years BP), more weathered and
hydrothermally altered clastic volcanic rocks (Swanson et. al. unpublished).

Two types of landslides occur in the basin. The most common are relatively
small (avera g ing approx. 2000 m3 ), shallow, rapid debris slides that take place on
hillslopes during intense rainfall and rain-on-snow events. The second type are
relatively large, deep-seated, slow-moving landslides (earthflows) that move
seasonally at rates varying from centimeters to meters per year. An extensive
inventory was conducted which documented over 140 debris slides since 1950 in
the basin (Dyrness 1967, Swanson and Dyrness 1975, Swanson et. al. 1981).
Landslide susceptibility in the basin has been interpreted to be a function of both
slope steepness and soil strength, as represented by the type of underlying bedrock
(Dyrness 1967, Swanson and Dyrness 1975).

Table 1.—Derivation of landslide
susceptibility classes.

Slope	 Rock Strength Susceptibility
< 10'	 Weak
	

Moderate
Moderate	 Low
Strong	 Low

10° — 20°	 Weak
	

High
Moderate	 Moderate
Strong	 Low

> 20°	 Weak
	

High
Moderate	 High
Strong	 Low

In applying GIS to produce a
landslide susceptability index map, a
DEM produced by the U.S. Geolog-
ical Survey (USGS) was used which
has a 30-m resolution and an elevation
RMSE of 7 meters. The basin is
located within a portion of the DEM
measuring 309 x 426 cells and
occupies some 69,952 cells or 53% of
it (Figure 1). Elevation values in the
basin vary from 411 meters above sea
level in the south-west to 1615 meters
in the south-east.
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•	 Figure 1.—Hill-shaded view of the DEM covering the Lower
Creek Basin test area.

In deriving a landslide susceptibility index map, the slope gradient was first
calculated from the DEM for each cell and then reclassified into 3 categories—
greater than 20° representing 'high' slopes, l0°-20° for 'moderate', and < 10° for
`low'. A geological map was also created with the same grid cell size and geo-
referencing as the DEM. Bedrock was classified by strength, with young lava
flows and intrusive bodies being graded as 'stron g ', intermediate age clastic rocks
including well-welded ashflow units as `moderate'; and old hydrothermally altered
clastic rocks (18-25 million years BP) as 'weak'. Using the Arc GRID software
throughout the research, the slope gradient and rock strength grids were combined
to yield a matrix of nine values, which were then reclassified into three levels of
landslide susceptibility—`high', 'moderate', and 'low' (see Table 1). This is the
traditional manner in which GIS is used to solve the problem, as shown in Figure
2, and the combination of the DEM with the derived slope grid and geology grid
produces a single susceptibility index grid.

Clearly, there is considerable potential here for applying the uncertainty model
to assess the cumulative effect upon the final susceptibility index derived for each
cell—given that it is a function of the DEM resolution and its estimated elevation
error; the slope gradient calculation for each cell; and the method of reclassifying
the slope values and rock types to derive the index. In the alternative approach
which permits uncertainty to be assessed (Figure 2), elevation noise files with
varying levels of spatial autocorrelation were applied to the original DEM to
establish corresponding sets of slope files for the test site. The range of ten default
values of p as described in the previous section was used. The realized slope files
were then taken in turn with the geology file and used to derive ten susceptibility
index grids.
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Figure 2.—Comparison of the traditional and proposed
methods of calculating landslide susceptibility.

Each realized grid was subtracted from the ori ginal susceptibility grid to give a
set of ten difference grids (one for each value of p), and two graphs were produced
showing the mean and standard deviation of the differences respectively for each
grid as plotted against p. Both graphs indicated that mean and standard deviation
values increased slightly from p = 0 to p = 0.21, then dropped suddenly as p
approached 0.25. The value of p = 0.21 was estimated as the point at which
distortion of the DEM produced an output that was both stochastic and 'truthful',
however this aspect of the uncertainty model remains subjective and is the subject
of continuing research.

It should be noted here that the actual mean and standard deviation values for
each realized grid have little significance since they apply to nominal data, even
though the susceptibility indices of 'low', 'moderate' and 'high' were assigned
numeric values to enable differencing. Nevertheless, the graphs still serve a useful
purpose in identifying a p value which can be used for more detailed processing.

The procedure was then repeated by taking nine elevation error grids at the
single value of p = 0.21 and creating nine realized susceptibility index grids. Since
cells exhibiting high instability are of greatest interest, both the original

286



susceptibility index grid and the realized grids were reclassified so that cells with
`low' and 'moderate' indices were assigned a value of zero, while cells with a
`high' index were allocated a value of unity. The nine realized grids were added
together to produce a single grid containing cumulative values denoting the number
of times each cell scored a 'high' index on a scale of 0-9. While only nine
realizations of the landslide susceptibility index grid were created due to time
constraints in preparing this paper, it is considered that a much greater number
(such as 100 realizations) would be used in practice to ensure the absence of any
bias in the elevation error files used to perturb the DEM. However, the results
obtained still enable useful comments to be made about the process.

To visualize the results, we took the original susceptibility map and overlaid all
grid cells with a 'high' index (shaded black) on a set of site contours produced at
100 m interval (Figure 3, top). For comparison, we then took the cumulative index
grid described previously and selected all cells that scored a 'high' index at least
once (Figure 3, middle), together with those that achieved the maximum score of
nine (Figure 3, bottom). These cells were also shaded black and overlaid on the
same set of contours. Alternatively, we could choose cells on the basis of some
probabilistic measure, for example, by selecting all cells which score a 'high' value
at least seven out of nine times.

Table 2.—Relationship between 'high'	 In the original susceptibility map,
cell scores and area of the site affected. 	 the Boolean nature of the slope

reclassification into categories with
thresholds at 10° and 20° meant that a
cell could receive only one index
value. However, with the proposed
method even though we maintain the
same thresholds (and their values are
not in question here), we can see how
the susceptibility index for a cell
behaves under variation of the input
DEM. Obviously, cells lying on
'weak' or 'moderate' rock and having
slope gradients close to either of the

thresholds are most likely to exhibit variation in their susceptibility index.

Table 2 compares the number of 'high' cells in the original susceptibility grid
and the area of test site affected, with the number of cells achieving a 'high' score
between 1-9 in the cumulative realized grid. From a user's perspective, selecting
cells that achieve a 'high' score at least once is clearly the least conservative choice,
given that the elevations of many of these cells will have been perturbed several
standard deviations from the mean during the process. We believe this would lead
to overestimation of the area affected. On the other hand, selecting only those cells
that attain a 'high' score the maximum nine times is the most conservative approach
and most likely underestimates the true area of the site susceptible to landslides.
There is, however, no right or wrong answer to the selection problem, and the level
of risk a user is prepared to accept in the end product becomes a matter of personal
choice. In other words, users must learn to live with some degree of uncertainty in
their outputs and make value judgements appropriate to individual project
requirements.

`High	 Score' No.	 Cells Area of Site
>1 20,280 29%
>2 16,843 24%
>3 14,428 21%
>4 12,549 18%
>5 11,034 16%
>6 9,651 14%
>7 8,349 12%
>8 6,872 10%

9 4,982 7%
Original Map 10,168 14%
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Figure 3.—(Top) All cells in the original susceptibility index	 map scoring
a 'high' value are shown in black overlaid on 100m contours. 	 (Middle) All
cells shown scoring at least one 'high' value in the realization process.
(Bottom) All cells shown scoring the maximum nine 'high' value.
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Finally, there is another error source which will affect the susceptibility index
that has not been considered here—positional uncertainty in the geological
boundaries used to derive rock strengths. At this stage, the uncertainty model
described here is not capable of handling this issue since a solution requires
perturbation of the original geological polygons in the horizontal plane. However,
research is currently being conducted in this area and another paper elsewhere in
this proceedings describes the experimental work that has been done to date to
overcome the problem (see Hunter et al. 1996).

CONCLUSIONS

In this paper, the authors have described a process whereby a simple slope
stability model used in identifying landslides with the aid of GIS, has been
modified to assess the uncertainty in the final susceptibility map as a result of
elevation error in the original DEM and its propagation effects upon the intermediate
processes involved. Several different, but equally probable, versions of the input
DEM were created through the addition of random, spatially autocorrelated noise
(error) files, and then processed to produce a family of slope stability maps. Users
may then choose the level of risk they are prepared to accept in the final output and
identify cells susceptible to landslides that meet their criteria.

There are two benefits to the research. Firstly, the inclusion of uncertainty
assessment in the process has the potential to facilitate improved natural resource
management decisions in relation to harvesting and subsequent slope stability. And
secondly, from a user's perspective the application of the uncertainty model to
applications such as the one described here provides a new dimension to their
ability to understand the meaning of their GIS products.
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