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Patterns of nitrogen uptake and loss in relation
to litter disappearance and associated invertebrate biomass

in six streams of the Pacific Northwest, U. S. A.

FRANK J. TRISKA and BARBARA M. B UCKLEY

With 5 figures and 2 tables in the text

Introduction

In 196S, KAUSHIK & HYNES first demonstrated protein increases in litter undergoing
decomposition in a lotic ecosystem. Since that time, numerous studies have indicated
conditioning of litter by the microbiol community is an important prerequisite to in-
vertebrate consumption (TRISKA 1970; MAKAF & KALFF 1973; BARLOCHER & KENDRICK
1973 a, b, 1975; IVERSEN 1973; ANDERSON & CRAFIUS 1975). Rates of leaf processing
of various leaf species in a single stream have also been determined (MATHEws &
KOWALCZEWSKI 1909; THOMAS, 1970; TRISKA 1970; IVERSEN 1973, 1975; PETERSON &
CUMMINS 1974; SEDELL et al. 1975; HODKINSON 1975). Proposed mechanisms of micro-
biol conditioning in conjunction with decomposition include such factors as leaf texture,
protein and nutrient increase, partial cellulose hydrolysis and polyphenolic leaching,
to name a few.

In streams of the Cascade Mountains (Oregon, U. S. A.) previous studies have
led to the conclusion that if any nutrient is limiting to the biota associated with litter
it is N. As a result, a study of N change during litter decomposition was undertaken
in six different streams using identical litter substrates. The study had four specific
objectives:

to ascertian the decay coefficient (PETERSON & CUMMLNS 1974) of identical litter
debris over a wide range of stream habitats.
to observe both qualitative and quantitative changes of the N pool of litter under-
going decomposition in a wide variety of habitats.
to determine the extent to which leaf litter might act as a N sink for the stream
ecosystem and as a source to the invertebrate community.
to determine the response of invertebrates to changes in the N pool.
The overall goal was to define properties of litter processing common to the six

streams by using a single leaf species over a wide variety of habitat types, rather than
using many leaf species in a single stream as has most often been the case in previous
litter studies.

Site description

To accomplish the objective and overall goal listed above, six diverse sites were
selected from three different regions of Oregon and Washington, U. S. A. (Fig. 1,
Table 1). Two streams were selected from each of three major areas, the Coast Range,
the Cascade Range and the Experimental Spring site. The coast streams were charac-
terized by sedimentary deposits with a large proportion of fine mineral particulates.
The riparian vegetation was primarily deciduous dominated by alder (Aldus rubra) and
salmonberry (Rebus spectabilis). Beyond the riparian zone vegetation was dominated
by a 130-year-old Douglas-fir (Pseudotsuga menziesii) forest at Flynn Creek and a
10-year-old clearcut at Needle Branch Creek. At the Experimental Spring site (Washing:
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Fig. 1. Location of the three study sites in the Pacific Northwest, U. S. A.

ton, U. S. A.) channels are man made replicates whose source is a large spring. Both
experimental spring streams are 1.2 m wide with a current velocity between 0.3 and
0.4 m/sec. The mineral substrates consist of smooth washed gravel between 2 and
4 cm diameter. Riparian vegetation was completely removed exposing the streams to

Table 1. Physical-chemical characteristics of six Oregon sites.

OREGON

Flynn	 3	 2.02	 3
Needle Br.	 2	 0.70	 1.5N pool.

Experimental Spring Stream
essing common to the six 3. Nitrate	 N. A.	 N. A.	 1.2habitat types, rather than inputbeen the case in previous 	 4. Control	 N. A.	 N. A.	 1.2
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5. Mack 3 6.50 5

ve, six diverse sites were	 6. WS 10 1 0.10 1
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Environmental characteristics:
Coast Range: Sedimentary rod; 3600 degree days/yr.; precipitation 250 cm as fall-winter

rains; old-growth forests = 130 years.
Experimental Spring Stream: Washed river gravel (4 6 cm DIA.): 2200 degree days/yr.;

precipitation 300 cm; cleared of vegetation.
Cascade Range: Volcanic rod:; 2700 degree days/yr.; precipitation 220 cm as fall-winter

rains and spring snow melt; old-growth forests = 450 years.
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full sunlight. Finally at the Cascade site (Oregon. U. S. A.) streams flowed over substrates
of volcanic basalt. The surroundin g forest, primarily Douglas-fir approximately 450 years
old, formed a dense canopy over the streams.

Order of the six streams ( S TRAIILEE 1964) varied from springs to third order streams.
Draina ge area varied from 0.10 to 6.51= 2, and in width from 1-3 in. Site elevation
varied from 200-830 m. The lowest stream gradient was 1.4 6/o and the highest 45 0/o.
Nitrate concentration ranged from nondetectable levels to 1.15 mg/l. Temperatures
varied from 2-18 c C annually. except for the experimental spring streams which had
a constant temperature of 6 ± 0.5 G C. Within this diversity of geological physical and
chemical parameters a decomposition study was conducted using needle litter of Dou-
glas-fir.

Material and methods

Needle litter was collected at abscission, dried at 50 °C and strung on monofilament
nylon line to form 5-15 gram packs. Needle litter offered many advantages over faster
decomposing leaf litter since events which mark the general history of decomposition
are more readily observed within longer sampling intervals. In addition, each pack
consisted of hundreds of needles which dampened potential variation between needles
in fiber or nutrient content. Leaf packs were preweighed. tied to bricks and placed
in the streams so the pack rested against the face of the brick. Leaf packs were collected
at approximately tri-weekly intervals and returned to the laboratory where they were
gently rinsed. Insects and ancillary debris were removed by hand. Associated inver-
tebrates were dried and weighed on samples from the Coast and Cascade sites. Leaf
packs were again dried and weighed to estimate wei ght loss. The series of weight loss
data was fitted to the exponential decay model of PETERSON & C UMMINS (1974):

yt 	yoe-kt

Lines were fitted by linear regression and logarithmetic transformation. The slope of
the regression, I:, served as an index of decomposition. After packs had been reweighed,
the litter was ground on a Wiley mill (40 mesh) and analysed for nitrogen using the
microkjeldahl technique.

Results

Si gnificant differences in weight loss were observed between the six streams.
Deca y coefficients (Table 2) indicated a five-fold range in weight loss rates from
0.18 to 1.0 °/o/day. Both the lowest (WS 10) and highest (Mack Creek) rates
of weight loss were observed in Cascade streams. The two experimental spring
streams exhibited approximately equal disappearance rates despite the artificially
elevated concentration of nitrate (100 ppb) in the N input stream (TRisKA &
S EDELL 1976). The two Coast streams also had similar decay rates despite large
differences in the nitrate concentration of the water (0.17 vs. 1.15 mg/I).

Since weight loss rates varied widely, N changes were examined to define
properties common to the decomposition of litter in streams. In all six streams,
N concentration increased with the passage of time following losses due to leach-
ing (Fig. 2 a, b). Initial N concentration (0.53 °Jo) decreased by almost half within
two days in the N input and control stream, the only streams where short term
leaching data were available. Following leachin g, a dramatic increase in N con-
centration was observed on litter from five of the six streams (Fig. 2 a). Within
40 days, needle litter from these five streams exhibited N concentrations higher
than that observed in the initial litter. N concentrations peaked at a level almost
twice as high as litter prior to incubation except for WS 10, the only true first

Table 2. Weight loss data
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Table 2. Weight loss data (1973-74) for needle litter of Douglas-fir from six streams.

Decay
coefficient (k,,

Regression equation r

Flynn .0083 LN(Y)	 4.2552-0.0083X .75
Needle Br. .0089 LN(Y) = 4.3318	 0.0089X .66
Nitrate Input .0041 LN(Y) = 4.503 -0.0042X .91
Control .0045 LN(Y) = 4.4735	 0.0046X .82
Mack .0100 LN(Y) = 4.8102-0.0100X .75
WS 10 .0018 LN(Y)	 4.3456-0.0019X .S2

order stream. Qualitatively, similar results were observed in all six streams in
terms of N concentration, namely, large leaching losses followed by a larger in-
crease in N concentration. Quantitatively, however, increased N concentration
above zero time levels in WS 10 were only observed after 180-200 days in
place, compared to 40-60 days for the other five streams.

Loss of N due to leaching also dramatically altered carbon : nitrogen ratios
since N losses were greater than carbon losses from leaching, and because C
concentrations varied little as decomposition continued. Prior to incubation, C/N
ratio of needle litter was 93, but rose to as high as 250 in WS 10. Within 60
days C/N ratios fell, again to a range between 40-60 and remained within
this range as decomposition proceeded in the first 5 streams (Fig. 3 a). In WS 10
(Fig. 3 b), decomposing needle litter never exhibited a C/N ratio below 80, while
the minimum C/N ratio was between 45 and 50 for the other five streams. The
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Fig. 2. Change in N concentration as decomposition proceeds on litter of Douglas-fir.
(a) Pattern of N change in streams 1-5. (b) Pattern of N change with the addition
of data from stream 6 (WS 10). Initial N concentration was 0.53 °/o.
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Fig. 3. Decrease in C/N ratio as decomposition proceeds on litter of Douglas-fir. (a)
Pattern of C/N ratio decrease in streams 1-5. (b) Pattern of C/N ratio decrease with
addition of data from stream 6 (WS 10). Initial C/N ratio was 93.

minimum C/N ratio was also attained at a far later date in WS 10 than in the
other five streams.

Since both N concentration and C/N ratio provide only relative indices, abso-
lute N content (capital) was also calculated based on a theoretical starting weight
of 10 grams (Fig. 4). A ten gram leaf pack had a N capital of about 53 mg N
prior to incubation. Initial leaching lowered the N capital to approximately
20 mg during the first few days. Thus, while total weight loss due to leaching
amounted to 20 °/0, loss of N capital exceeded 50 °/o. From this base of approxi-
mately- 20 nag, N capital increased rapidly as decomposition continued. N capital
,.vas greatest between 40-60 0/0 weight loss for the first five streams and be-
tween 30-50 °/0 in WS 10. At some stage of decomposition an absolute increase
in N capital above zero time levels was observed in all six streams. The increase
in N capital was least at WS 10. After N capital peaked it declined steadily as
carbon was mineralized.

If N is a major factor of conditioning, the food quality should be optimal
near the time of lowest C/N ratio and some invertebrate response might
be expected. To observe this potential effect, the C/N ratio of litter
was plotted against invertebrate biomass associated with leaf packs (Fig. 5).
Watershed 10, which had the least gain in nitrogen concentration or
capital, and the highest C/N ratio, also had the least invertebrate biomass
associated with needle packs. Maximum invertebrate biomass (11.2 mg/g leaf
pack) was found at the time of lowest C/N ratio (80). In Mack Creek, the
lowest (C/N ratio was approximately 50 and occurred about 3 weeks before
maximum invertebrate biomass was observed on the litter. Once discovered by
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Fig. 5. Invertebrate biomass in relation to C/N ratio on litter of Douglas-fir from four
different streams.

the invertebrate community a maximum of 35 mg invertebrate biomass occurred/
gram of needle pack. This compares favorably with Flynn Creek where a maxi-
mum of 28 mg invertebrate biomass/g needle pack was collected at a C/N ratio
of 49. Highest invertebrate biomass was associated with litter packs at Needle
Branch Creek which also reached the lowest C/N ratio (42). In that stream,
highest invertebrate biomass was 76 mg invertebrates/g of needle pack, on
a sample with a C/N ratio of 50.

Discussion

One major drawback of using decay coefficients as decomposition parmeters
is the effect of abiotic processes as leaching or physical abrasion or biotic par-
meters such as insect consumption which might result in significant weight loss.
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In addition, other factors such as temperature regime and sediment size (siltation)
may also effect litter disappearance rates. Thus, for streams of approximate size,
geology. and gradient such as in the Coast sites (Flynn and Needle Branch Creek)
or the Experimental Spring site (control and N input), decay coefficients were
similar despite differences in the dissolved nitrate concentration of the water.
In the Cascades, where physical differences in stream width, gradient, and eleva-
tion were large, differences in decay coefficient were likewise large. Thus, within
similar watersheds of a region, decay coefficients may be a valid index of decom-
position. However, across regions, gradient and size of drainage established decay
coefficients may not apply even for identical litter.

While decay coefficients may not apply over a wide variety of physical
habitats, certain decomposition processes were found in common. Large amounts
of N. were leached from needle litter, yet an absolute gain in N capital was
eventually observed in all six streams. Similar gains in absolute N content have
previously been reported in the literature for lotic ecosystems (MATHEws &

KOWALCZEWSKI 1969; IVERSEN 1973; HODKINSON 1975; TRISKA 	 SEDELL 1976).

This gain in N capital demonstrates the capacity of the microbial flora to colonize
leached litter. This colonization in turn determines the speed and extent to which
litter is conditioned for consumption by invertebrate consumers. Although this
gain is mediated by microbial colonization, IVERSEN (1973) estimated only 1-3 0/0
of total litter N can be accounted for by microbial biomass. He postulated the
remainder came from microbial secretion. This idea is also supported by data
of MORTON & BROADBENT (1955) who observed secretion of short chain refractory
poly-peptides in culture by Scopulariopsis brevicaulis from a variety of N sources.
Therefore, the source of N for microbial secretion may be tissue N, dissolved
organic N from the water, and even inorganic N from the water or sediments
(NICHOLS & KEENEY 1973). Once captured by the microbial community, sub-
sequent secretions may be complexed to refractory fibrous tissue of litter debris
(SUBERKROPP 8: Kum 1976; SUBERKRORP et al. 1976; TRISKA unpubl. data). Al-
though the mechanism is complex and not well established, the gain in N capital
does demonstrate how leaf litter and, perhaps, detritus in general may serve as
a N sink for the stream ecosystem. The magnitude of this sink, however, is ulti-
mately dependent on the capacity of the channel itself to capture and store
organic material.

Summary and conclusions

Decay coefficient varied over a five-fold range in the six streams studied. Despite
this large difference in disappearance rate a qualitatively similar pattern of N uptake
and release was observed in the six streams studied. The pattern was characterized
by a large physical loss due to leaching followed by a N gain presumably related to
microbial colonization. Quantitatively, this pattern was similar for five of the six streams.
The exception was WS 10, a first order forested stream. All streams exhibited an absolute
N gain sometime during decomposition. This N gain was presumably mediated by
microbial colonization. Whatever the source, the absolute gain in N capital results
in a N sink for the ecosystem and a source to litter consuming invertebrates. In addition,
an invertebrate response was observed in relation to the C/N ratio of decomposing
needle litter. Highest invertebrate biomass was found associated with litter packs when
C/N ratio was lowest. Needle Branch Creek, where needle litter had the lowest C/N
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