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AERIALAND SATELLITE
SENSOR DETECTION AND
CLASSIFICATION OF
WESTERN SPRUCE
BUDWORM DEFOLIATION
IN A SUBALPINE FOREST

RESUME
La detection et la classification des patrons de defoliation
par la tordeuse occidentale de /'epinette (Choristoneura
occidentalis, Freeman) dans une foret subalpine de
I'ouest de /'Oregon ont ete realisees a /'aide d'images
video acquises a deux altitudes a partir d'un aeronef ultra
leger et a /'aide d'images numeriques multibandes
acquises par Ie capteur thematique de Landsat.

L'analyse de texture des images video a donne lieu a
une precision de classification de /'ordre de 78 % en
reference avec un releve de' terrain de la defoliation et

de /'interception de lumiere du couvert forestier
effectue sur 21 parcelles en septembre 1994. Les
donnees acquises par Ie capteur thematique en 1993,
a elles seules, ont permis d'obtenir des resultats de
classification satisfaisants dans une proportion de 75 %
pour quatre classes de dommages (aucun, leger,
modere et severe) dans ces memes parcelles.

La precision cartographique etait de /'ordre de 67 %
d'apres les resultats d'une classification (K-moyennes)
non dirigee modifiee. A partir d'une serie de donnees
diachroniques acquises par Ie capteur thematique de
Landsat, une comparaison a ete effectuee entre une
structure forestiere telle qu'elle apparaissait avant
/'epidemie en 1988 et cette structure en etat de
defiolation a la suite de la chute de la population
d'insectes en 1993, ce qui a permis d'atteindre une

. S.E.Franklin is with the Department of Geography, The University of
Calgary, Calgary, Alberta TIN 1N4..RH. Waring is with Department of Forest Science. Oregon State
University, Corvallis, Oregon 97331..R W. McCreight is with the Department of Bioresource Engineering,
Oregon State University, Corvallis, Oregon 97331.·W.B. Cohen and M. Fiorella are with the USDA Forest Service, Pacific

Northwest Forest and Range Experiment Station, Corvallis, Oregon
97331.

@Canadian Journal of Remote Sensing/Journal canadien de IIHedetection

by S.E. FRANKLIN ·R.H. WARING.
R.W, McCREIGHT· w'8. COHEN.
M. FIORELLA

precision de 86 % dans la discrimination de trois classes
de dommages (aucun, leger/modere, severe).

L'analyse texturale et spectra Ie combinee des donnees
video peut constituer une methode complementaire aux
photographies aeriennes et aux releves de terrain
classiques pour evaluer Ie niveau de defoliation ainsi
qu'une solution de rechange a la tache complexe que
constitue la selection des sites d'entrainement pour les
classifications effectuees a /'aide d'images satellites.

SUMMARY
The detection and classification of western spruce
budworm (Choristoneura occidentalis Freeman)
defoliation patterns in a subalpine forest in western
Oregon was accomplished with videographic imagery
acquired at two altitudes from an ultralight aircraft and
with multitemporal digital Landsat TM satellite imagery.

Image texture analysis of the aerial videographic data
provided 78% classification accuracy with reference to a
ground survey of defoliation and canopy light
interception made on 21 plots in September 1994. The
1993 TM data alone provided 75% correct
discrimination in four damage classes (none, light,
moderate, severe) in these same plots. Mapping accuracy
was 67% correct based on a modified, unsupervised
K-means classification. A multitemporal TM image data
set enabled the comparison of a pre-outbreak forest
structure in 1988 and defoliation conditions following a
collapse of the insect population in 1993, which
improved the discrimination of defoliation to 86% in
three damage classes (none, light/moderate, severe).
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A combination of spectral and textural analysis of aerial

videographic data may provide a complementary
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technique to conventional photography and ground
surveys in assessing defoliation, and may offer an
alternative in the complex task of training site selection
for satellite-derived image classification.

INTRODUCTION

Aerial and satellite sensor digital imagery provide a
basis for classifying and mapping defoliation caused

by insects or other agents in a wide range of forest environ-
ments through the detection of subtle changes in the spec-
tral properties of foliage (Bucheim et al., 1985;Rock et al.,
1988;Leckie et al., 1988;Franklin, 1989;Ahem et al., 1991a;
Muchoney and Haack, 1994)or as a result of a reduction in
the canopy leaf area (Leckie and Ostaff, 1988; Ekstrand,
1990;Ahernetal., 1991b;Brockhausetal., 1993).Aerialdigital
image analysis can provide a close view of individual tree
crowns or small stands; satellite digital image analysis
would seem well suited for identifying canopy defoliation
classes and for mapping changing patterns across large
landscapes. The remote sensing techniques may provide
results that are equivalent to/ or better, than those obtained
from aerial sketch-mapping (Franklin and Raske, 1994)or
from limited ground surveys of small areas that represent
different types of stands and their conditions.

Aerial remote sensing of forest defoliation has been re-
ported using a wide range of sensors and analysis tech-
niques (Ahem et al., 1991a).The accuracy of digital aerial
forest defoliation assessment may be increased through
multispectral band manipulation (Leckie et al., 1992) and
through image texture analysis (Ghitter et al., 1995). For
example, image ratios, normalization, or principal com-
ponents analysis can improve the signal-to-noise ratio by
removing differences associated with variable illumination,
thereby possibly increasing. the ability to detect subtle
colour changes. Other noise-inducing factors, attributed to
variation in the transmissivity of the atmosphere or to in-
strument sensitivity, also may be reduced. Image texture
analysis allows for spatial variability in tree-level damage
that reflect differences within tree crowns or among trees
within a stand. In 1991Yuan etal. reported reasonably good
results with multispectral texture analysis in aerial video
detection and classification of sugar maple decline. The
application of digital aerial video imagery with texture
analysis in conifer forest defoliation assessment and scaling
to satellite imagery has not.been tested.

Few examples of operational forest defoliation assess-
ment by satellite remote sensing exist, partly because of the
difficulty in covering a large area with sufficient detail at
acceptable levels of accuracy. One requirement is for sets of
cloud-free images over a series of years or seasons (Beau-
bien/ 1994).The multispectral data should be stratified by
forest structure priorto image analysis to predict defoliation
accu~a!ely(Ekstr~nd, 1994).This stratification may be based
on dlgltal.forest mven~ory data or from multitemporal re-
mote sensmg observatIOnsof stand Structure made prior to
the defoliation (Khorram et al., 1990;Brockhaus and Khor-
ram, 1992).Once defoliation is noted, it is often difficult to

obtain a sufficient number of homogeneous training ~ites
(McCaffrey and Franklin, 1993; Bucheim and Lillesand,
1989;Bolstad and Lillesand, 1991)representing easily rec-
ognized stages of defoliation, as, for example, when foliage
is red.

A large-scale Western Spruce budworm (Choristoneura
. occidentalisFreeman [Lepidoptera: Tortricidae)) infestation
between 1989and 1993in the Cascade Mountains ofwestern
Oregon afforded an opportunity to assess the ability of
aerial and satellite sensor systems to detect various levels of
defoliation in a relatively homogenous subalpine conifer-
ous forest. An ultralight Near-Earth-Observation-System
(McCreight et al., 1994)collected aerial videographic data
over the defoliated stands on two missions in September
and October 1994.To utilize better the inherent advantages
of satellite digital analyses, we investigated the possibility
of extending aerialdigital imageanalysesvalidated on a few
precisely located training sites to satelliteimageanalysisof a
larger area. We discriminated and mapped. defoliation
using the aerial video data, 1993Landsat TM digital data,
and also examined the possibility of increased defoliation
discrimination through change detection analysis using a
1988(pre-outbreak) Landsat TM image.

This paper outlines the logical steps in the multitemporal
and multisensor digital analysis of forest defoliation, with
examples and quantitative assessments of discrimination
and mapping accuracy for four digital data sets, compared
to field observations of defoliation acquired using ocular
estimates and light absorption data acquired at 21 locations .
along a transect through the stands of interest.

STUDYAREAAND DATA COLLECTION

The study was centred on a 150- to 200-year-old subal-
pine forest at Santiam Pass, Oregon (Lat. 440 25' N,

Long. 1210 50/ W) at an elevation of 1460 m (Figure 1).
Mountain Hemlock (Tsugamertensiana), subalpine fir (Abies
lasiocarpa),Engelmann Spruce (Piceaengelmanir) with some
scattered Western White Pine (Pinus monticola) comprised
the predominant cover type. On the southern edge of this
forest, a young stand of Lodgepole Pine (Pinus contorta) has
replaced the dominant type following a wildfire in 1967. The
leaf area index of the older forest averaged <3'before the
insect outbreak (Runyon etal., 1994).A sparse cover of huckle-
berry (Vaccinium membranaceum)represented the only signifi-
cant ground vegetation in leaf at the time of the study.

The area receives >200 em of precipitation annually,
mostly as snow. The growing season is less than four
months (Franklin and Dyrness, 1973). Meteorological data
were collected at the site between 1989 and 1991 as part of
the Oregon Transect Ecosystem Research (OTIER) project
(Runyon et al., 1994). The NASA project was a multiple
aircraft campaign (see the special issues of Ecological Appli-
cations (Peterson and Waring, 1994) and Remote Sensing of
Environment (Goward et al., 1994a».

FieldAssessmentof Defoliation

Two estimates of defoliation were acquired on Septem-
ber 15/ 1994, at 21 field plots located on a random transect
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Figure 1.
Location of the study area (labelled site 4) in the subalpine zone of western
Oregon; sites 1, 2, 3, 5, and 6 represent other forest types that were part of the
OlTER experiment (see Peterson and Waring, 1994; Goward et al., 1994al.

through the subalpine forest stands of interest. An approxi-
mately 10 by 10 m sampling area was used for each plot.
First, ocular estimates of defoliation as a percentage of the
tree foliage were obtained by three field staff and averaged
to produce a single estimate of defoliation in the field. These
estimates were grouped into four categories of defoliation
for the upper third of the crown: none (no visible defolia-
tion), light (1-24% defoliation), moderate (25-49%defolia-
tion), and severe (more than 50% defoliation, including
dead trees). This is a standard field method for defoliation
assessment, and was used by Franklin and Raske (1994)in
their satellite remote sensing study of Eastern Spruce bud-
worm defoliation of Balsam Fir forests in western New-
foundland.

Second, Photosynthetically Active Radiation (PAR) was
measured with a sunfleck ceptometer (Decagon SF-80)in
single-sensor mode in each sample plot (Pierce and Run-
ning, 1988). A total of 100 readings were acquired when
traversing the plot, but only the average value was re-
corded. The PAR observation for each plot was converted
to leaf area index estimates assuming a light extinction
coefficient (k) of 0.5 (after Jarvis and Leverenz, 1983):

where lz is the PAR measurement per plot and 10is the
incoming solar radiation measured in open areas at
frequent intervals throughout the sampling period (re-
stricted to the local hours 1000-1400).

Canadian Journal oj Remote Sensin!VJournal canadien de Ieledeleclion

Remote Sensing Observations

Near-Earth-Observing-System .
Aerial video imagery were acquired from 300m

above ground on September 7, 1994,and 2000 m
above ground on October 2, 1994,over the Santiam
Pass using the system described by McCreightetal.
(1994).The video data were recorded with a Sony
CCD-TR5Video-8camera with the automatic expo-
sure gain control operable. Each image frame was
time-tagged in milliseconds, and the GPS coordi-
nates were recorded in an image trailer using the
NavStar (P-code) Global Positioning System. A
Matrox graphics board, driven by DecisionImages
PC-software (v 3.24; Decision Images Inc., 1989),
was used to frame-grab and colour composite
selected video scenes into RGBcolour space, which
were then transferred to the PeI EASI/PACE pro-
cessing system (v 5.2;PeI Inc., 1993)running on a
SUNSPARC 10workstation. The resolution of the

video ima~ery was determined to be approxi-
mately 1 m pixel for the September 7 data and
2 m2 pixels for the October 2 data through
measurements of common features (road cuts,
clearings, and small buildings, for example).

Recent improvements in aerial videography
suggest that these data may be calibrated (King,
1992) and used as a surrogate for some types of

environmental field data (Neale and Crowther, 1994),as a
tool for assessing satellite image land-cover classification
accuracy (Marsh et al., 1994), and as a general source of
resource information for updating GISdata bases (Bobbeet
al.,1993).However, in radiometric terms, the video imagery
in this study are not calibrated. No adjustment of the video
imagery for the automatic gain control settings and possible
non-uniform CCD sensitivity was made; only raw DN
values were used in the digital image analysis. Lens vignet-
ting was offset by sampling only within the middle one-
third of each video frame.

The field locations were identified on the video imagery
with small pixel windows (10by 10pixels for the September
7 data, 5 by 5 pixels for the October 2 data). The video
imagery were not georeferenced or resampled to a geo-
graphic grid since only the scene centres were tagged with
GPScoordinates and the field sites were often located away
from the frame centres.

Idaho

(1)

Landsat ~ digital image data
Landsat TM imagery acquired September 30,1993,were

geometrically registered to a second geocoded scene ac-
quired August 31,1988, with less than 0.6 pixel RMSEat 19 .

ground control points scattered across a quadrant scene. A
cubic convolution resampling algorithm was used to deter-
mine pixel values in a 25m grid. The image solar conditions
were 37"elevation and 147"azimuth, and 46. elevation, 138.
azimuth, respectively. The data were then transformed into
TM Tasseled Cap brightness, greenness, and wetness in-
dices (Crist et al., 1986).

An atmospheric correction (Richter, 1990)was appli~ to
the two image dates, but the impreciseness of the scattenng
model in 1993,when smoke and haze from burning fields
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to the west of the study area dominated the scene, led to
obvious errors in the change detection procedures (see also
Muchoney and Haack, 1994). Therefore, raw DN values
were used in the satellite image analysis techniques.

METHODS
Aerial ImageProcessing

Linear discriminant analysis was used to test the ability
of the aerial video graphic digital data to separate the

defoliation levels, and multiple regression was used to show
the relationships between the aerial video and the percent-
age of defoliation as estimated from the canopy light inter-
ception measurements. The original 21field plots served to
assess the accuracy of the discrimination, but uncertainty in
geometric locations of image pixels and field sites make
these comparisons more tentative than in the satellite re-
mote sensing discrimination.

Broad-band image normalization has been suggested as
a robust, empirical correction technique for use in video
image analysis in forest surveys and other applications. For
example, Leckie et al. (1992) found that transformed spectral
features were generally better than the original spectral
bands in the digital multispectral scanner detection of bud-
worm defoliation. Therefore, image normalization based on
a simple chromaticity calculation (Rees, 1990)was used to
illustrate graphically the different levelsofdefoliation in the
aerial imagery and to aid in locating field sites for sampling.
More complex image manipulations based on a series of
processing steps using image histograms, non-linear con-
trast modifications, and colour space transformations are
possible, but were considered beyond the scope of the pre-
sent analysis.

Video image texture processing was applied to the Oc-
tober 2, 1994,raw imagery in the form of spatial co-occur-
rence matrices (Franklin and Peddle, 1987;PCI Inc., 1993).
The texture variable homogeneity(Haralick, 1979)for each
colour band in the composite was selected based on an ad
hocinspection of the visual displays for additional analysis
(see also Franklin and Peddle, 1990).Homogeneity (H) is
computed as:

H =L L (P (i,j)/(l + R (I) ) - (C (I) )2 ) ) )
j i.

where P(i,j)is the spatial co-occurrence matrix element, R(i)
is the grey level value for a row, and C(P is the grey-level
value for a column. The measure was computed for four
directions (vertical, horizontal, left, and right diagonals)
and all three bands, and then averaged for a 5 by 5 pixel
window corresponding to the area measured on the ground
during the field survey.

Satellite Image Processing

Linear discriminant analysis (TM 1988 and 1993 data)
and image classification (TM 1993only) were used to test
the ability of satellite spectral data to separate defoliation
levels. Multiple regression was used to show the relation-
ships between the 1993TMspectral data and the percentage

----

(2)

of defoliation as estimated from the canopy light intercep-
tion measurements. Image comparisons were made by cal-
culating TM Tasseled Cap differences derived from the 1988
and 1993 Landsat imagery. For the 1993 Landsat TM image,
classification was based on a conventional modified unsu-
pervised algorithm 'seeded' with mean class values from
the field plots. The minimum distance to means (or
K-means) decision rule was employ~d. The original 21 field
plots served to assess the accuracy of these classifications,
which was computed as the sum of the diagonal in the
contingency tables divided by the number of classes.

Two separate procedures were required to accomplish
the detection of insect damage categories using the two
dates of satellite imagery, which were previously georegis-
tered: radiometric matching of the two images; and change
detection. Some degree of uncertainty in the analysis re-
mains because of the geometric error in locating a single TM
pixel corresponding to each field plot. While not definitive,
these results are considered valuable as a part of this' proof-
of-concept' study.

Radiometric matching
The two TM images were acquired on different dates,

and therefore under different illumination and atmospheric
conditions. To minimize associated radiometric differences
in the two images, a modified Hall et al. (1991) radiometric
normalization procedure was used. This requires that one
image be selected as a referenceimage (1988)that will remain
unchangedand thatonebeselectedasasubject(1993)image
that will be radiometrically "matched" to the reference
image. One dark control set was selected in spectral space
for the subject image and one was set for the reference
images. For the bright control sets, two were selected for
each image from both spectral and scene space. This pro-
vided four different sets of radiometrically matched images:
sets 1a and 1b using spectral space control sets; and sets 2a
and 2b using scene space control sets. In each set, "a" refers
to one bright control set and "b" refers to the other.

To evaluate the effectiveness of each of the four
radiometrically matched images, we selected in scene space
several groups of image pixels (a test set) representing an
array of dark to bright targets. These included water bodies,
old-growth, young, and deciduous forests, and rock out-
crops, all of which we assumed would have changed spec-
trally very little (relative to defoliated stands) between the
two dates. Over all test set pixels, we calculated the mean
spectral vector over all six TM reflectance bands and over
the TM Tasseled Cap brightness, greenness, and wetness
indices (Crist and Cicone, 1984;Crist et al., 1986). This
yielded two mean vectors for the test set of the reference
image (one for six-band TM space and one for three-index
Tasseled Cap space), two for the raw or unmatched image,
and two for each of the four radiometrically matched im-
ages. Finally, using these mean spectral vectors, we calcu-
lated the Euclidean spectral distance between the 1988ref-
erence test set and the five subject reference test sets. The
radiometric match that provided the shortest Euclidean
distance between reference and subject test sets determined
which radiometrically matched TM subject image to use in
the following change detection procedure.
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Change detection
With the GPS data collected in the field, we obtained TM

Tasseled Cap brightness, greenness, and wetness values for
single pixels within each of the 21 ground reference plots
from both the 1988and 1993imagery. Using these values,
we calculated the temporal differences in brightness, green-
ness, and wetness between 1988 and 1993 for each pixel.
These temporal-difference data were entered into a discrim-
inant function analysis to determine the spectral separabil-
ity of the four defoliation classes.The analysis was repeated
after combining the light and moderate defoliation classes
into a single class, and then again after combining the none
and light classes, and the moderate and severe classes, to
yield three and two defoliation classes, respectively. Also,
the discriminant analysis was conducted using the six spec-
tral values themselves (brightness, greenness, and wetness
in both 1988and 1993)rather than the temporal differences.

RESULTS
Field Estimatesof Defoliation

The relationship between the leaf area estimates derived
from the field PAR readings and the ocular estimate of

percentage of defoliation was strong (R2.=0.839,Y= -0.503x
+ 6.474;see Figure 2 for grouped data by defoliation cate-
gory). This relationship suggests that the current defoliation
level of each sample point may be adequately characterized
by the 1994 leaf area estimates. No notable regrowth was
observed in the field.

AerialImageAnalysis
The aerial videographic data were regressed on the field

estimates of percentage of defoliation (Table 2). As ex-
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Figure 2-
Plot of LAI estimates derived from ceptometer field observations of light
interception over four defoliation classes grouped by stand for the 21 field
sites. The 95% confidence intervals are shown as dashed lines.
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Table 1.
Mean 1993 TM digital number spectral response and

differences between percentage of defoliation measured at 21
sample locations. The defoliation classes were derived by
ocular estimation of the tree foliage in a 10 by 10 rn area by
three field staff and then averaged and grouped into four

categories: none (no visible defoliation), light (l-24'7r
defoliation), moderate (25-50'7, defoliation), and severe (more

than 500/, defoliation).

pected, the low altitude video data were poorly related to
the defoliation, probably as a result of the increased varia-
bility (1m2pixels) and the uncertainty in locating the exact
field site in the imagery (only the exact scene centres have
GPS-determined geographic coordinates). The higher-alti-
tude data set, with lower spatial resolution, illustrates a
stronger, though still weak, relationship (R2= 0.339).

The discrimination of damage classes using the aerial
videographic data resulted in 68% accuracy (October 2
high-altitude videography) and 60%accuracy (September 7
low-altitude videography) (Table 3). The videography re-
sults show that healthy and lightly defoliated trees were the

least separable, but that severe defoliation had the
highest discrimination (Figure 3). Image texture
analysis provided a substantive increase in ac-
curacy for the video imagery (which are inherently
textural). For example, the overall or mean accuracy
for the four defoliation classes increased from 68%
to 78% following texture analysis. The improved
discrimination occurred in the healthy, light, and
moderate defoliation classes.

'0

SatelliteImageAnalysis
Mean TM spectral response

The mean spectral response in TM bands
showed a characteristic small increase in visible
reflectance and a comparatively larger increase in
reflectance in the mid-infrared bands with in-
creased defoliation (Table 1). Only the increase in
band 5 was statistically significant in the sample.
This increase in mid-infrared reflectance with
decreased vegetation amounts may be a response
to the moisture status of the canopy or structure
differences. Increased blue reflectance may be a
direct response to the increased exposure of lichens
in the canopy in this sample (Goward etal.,1994b).

The TM were regressed on the ;ercentage ofdefoliation estimates (Table 2).An R value of 0.568

severe

1993TM DN

Band

1 2 3 4 5 7

DefoliationClass

None 32 11 8 16 14 5

Light 33 11 9 15 19" 7

Moderate 33 11 9 16 20" 7

Severe 34 11 10 17 21" 8

..Sinificant differencebetween samples with no defoliationand those
wit somedefoliationat95%probability.
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Sample
TM 1993

September 1994 Video (1 m pixels)

October 1994 Video (2 m pixels)

0.568

0.150

0.339

5.262

2.525

2.907

. Table 3:.
Percent accuracy for four defoliation classes using linear .

discriminant functions comprising the 1993 TM data and the
two aerial videographic samples and the field estimates of

defoliation class at the 21 field sites; The TM discrimination
used. bands 1,3,4,5, and Tin raw digital number format; the
aerial videographic discrimination used R,C,n raw signals.

sampled in small windows surrounding each field site:
location. Texture was derived for these bands using the-

homogeneity statistic (see Equation 2)...

TM 1993 Digital Videographic Data
(RCB format)

September October October
1994 1994 1994

(1 m pixels) (2 m pixels) with texture

was obtained for the TIv1image samples. This relationship
is consistent with that shown by Franklin and Raske (994)
using SPOT satellite data acquired during an Eastern Spruce
budworm infestation in Newfoundland (R2 =0.515based
on 56 samples). In that study and others (Ekstrand, 1994),
much stronger relationships between remotely sensed spec-
tral response and defoliation were reported following strati-
fication of the forest samples to reduce variance due to other
factors. For example, when controlling for stand age, den-
sity, and height class, Franklin and Raske (994) reported R2
values up to 0.74 between SPOT spectral response and
percentage of defoliation.

Classification of forest defoliation

The discrimination of damage classes using the 1993
Landsat satellite data set resulted in an overall classification
accuracy of75% (Table 3). These results are again consistent
with accuracies reported elsewhere for the satellite detec-
tion of spruce budworm defoliation (Bucheim et al., 1985;
Franklin and Raske, 1994). In this study, the healthy samples

t.,

--

Figure 3.
RGB colour space video image enhancement of small area
adjacent to field survey showing severely damaged trees
(purple), light/moderately damaged trees (light blue), healthy
trees (light green), soil background (pink), and understorey
vegetation (orange). The image has been generated from three
chromaticity indices followed by a histogram equalization and
contrast stretch.

had the highest discrimination and the severe defoliation
was the least separable. Most of the confusion was between
pixels in adjacent classes.

Maps of the defoliation classes were produced using the
K-means decision rule applied to the 1993 Landsat TM
image. Two maps were produced (Figures 4a,4b),one from
a modified supervised algorithm where the classes were
'seeded' with means and standard deviations based on the
field sample and the other using acompletely unsupervised
approach where only the number of initial cluster centres
(0) was specified. In both classifications, TMbands 1,3,4,
5, and 7 were selected. Bands 2 and 3 were similar to other
visible bands or showed no difference across the range of
defoliation classes (Table 1).The maps were subjected to a
7 by 7 modal (or rank) filter and checked for accuracy at the
21 field sites; they were consistent with those obtained in
the earlier discriminant tests (Table 3).For example, Figure
4a was found to be 67% in agreement with the field plots
with the highest accuracies obtained in the healthy (100%),
followed by the light/moderate (61%) and the severe
defoliation classes (40%).

Image change detection
Prior to radiometric matching, the 1988and 1993images

were spectrally quite different from each other. In multi-
spectral TM space, the radiometric matching test sets were
separated prior to matching by a mean of over 30 DN
(Figure 5). The darker targets (water and conifer forest)
were separated by around 25 ON, whereas the deciduous

Defoliation
Class

None 100 33 50 70

Light 72 75 54 72

Moderate 66 66 66 70
Severe 60 66 100 100

Mean 75 60 68 78
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The two bright control sets from scene
space had quite different effects on the spec-
tral properties of the subject image (Figure 5).
Set 2a was less effective than either of the sets
from spectral space, whereas set 2b was much
more effective than any other set. Using the
subject image radiometrically matched with
set 2b, one can expect that differences in spec-
tral properties between the 1988 and 1993 im-
ages are considerably more likely to be due to
real scene spectral changes than to effects of
different illumination and atmospheric condi-
tions at the times the images were collected.
This is the case whether one chooses to work
with the original TM bands or the Tasseled
Cap indices.

Regardless of which control set one evalu-
ates/ the Euclidean distances for TM bands
and the Tasseled Cap indices are quite similar.
This indicates that brightness, greenness, and
wetness capture most of the spectral informa-
tion in the TM data, as demonstrated by
Cohen et al. (in press) using totally different
methods.

Discriminant analysis using the temporal-
difference data provided classification ac-
curacies that were not particularly high for the
21 ground plots. The highest accuracy
achieved was 67% for three classes (Table 4).
That lower accuracies were evident for two
classes is a function of the shift in class boun-
daries. Using data from the six indices (three

for each time period) in the discriminant analysis, rather
than the temporal differences, yielded significantly im-
proved results. For three defoliation classes, 86% accuracy
in classification was achieved (Table 4).

Standardized coefficients for the discriminant functions
used to classify the ground plot data into three defoliation
classes using the six index values help to explain the in-
creased accuracy over the use of the temporal-difference
data (Table 5).The first discriminant function, significant at
the 0.026 level, weights most heavily the 1988 wetness
values. After that, the temporal contrast in brightness and

severe defoliation

light/moderate defoliation

light/moderate defoliation

.
rm
II'"....

II

Unclassified

no defoliation

severe defoliation

Figure 4a, 4b.
Unsupervised (top) and modified unsupervised (bottom) K-means classification of
the 1993 TM image into defoliation classes (none, light/moderate, severe) in a small
subarea approximately 2 km by 2 km, Santiam Pass. Mapping accuracy tested at the
21 locations surveyed in the field was approximately 67'7. overall.

forest and rock outcrop targets were separated by about 50
ON. Radiometric matching using control sets from spectral
space (sets 1a and 1b) cut the Euclidean distances between
the test sets of the two dates nearly in half, with both bright
control sets from spectral space having roughly the same
effect.

40

. TMBands 0 Tasseled Cap Indices

o
Unmatched Set 1A Set 1B Set 2A Set 2B

Figure5.
Euclidean spectral distances for the difference in 1988 and 1993

images prior to radiometric matching and after matching using
four different bright scene component control sets. See the text
for details.
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Table 4.

Percentage of accuracy for different numbers of defoliation
classes using discriminant function analysis with multi-date-
TM imagery and data from 21 ground reference plots. For the

defoliation classes: "four" is equivalent to the original four
, classes; "three" combines light and moderate classes; and
"two" combines the none and light classes and the moderate

and severe classes. Imagery lIsed were: (three difference
images) 1993 TM minus 1988 TM Tasseled Cap brightness,

greenness, and wetness, and (six indices, three from two'
different dates) the brightness, greenness, and wetness

images from 1993 and 1988.

Imagery Used
Differences (3)

Indices (6)

Number of Defoliation Classes

Four Three Two
48
67

67

86

57

86
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Table 5.
Coefficients for the two discriminant functions used to

classify the data from 21 ground reference plots using the
1993 and 1988 Tasseled Cap brightness, greenness, and.

wetness images (six indices) for three defoliation classes (see
Table a). Significance (p) values for Discriminant Function

(OF) 1 and OF 2 are 0.026 and 0.304, respectively..

[]~ DF1

-0.788

0.963

0.459

-0.438

-1.495

-0.251

DF2

1.214

-09.986

-0.604

1.003

0.584

-0.461

1988 brightness

1993 brightness

1988 greenness

1993 greenness
1988 wetness

1993 wetness

greenness are important. Verylittle weight is assigned to the
1993wetness value. This in effectmeans that, although the
contrast in brightness and greenness is important, bright-
ness and greenness are most useful indicators of defoliation
only after the original wetness values are accounted for. As
wetness is very strongly related to forest structure (Cohen
and Spies, 1992;Cohen et al., in press; Fiorella and Ripple,
1993), this means that by first accounting for variations in
initial stand structure, the results of change detection in
forested ecosystems can be done much more accurately.

CONCLUSION

D efoliation in a subalpine forest caused by Western
Spruce bud worm during an outbreak from 1988 to

1993was detected and classified using digital aerial video-
graphic data acquired from an ultralight aircraft at two
altitudes in 1994 and multitemporal Landsat TM satellite
imagery .

The discrimination of low-altitude videographic data
(approx. 1 m2 pixels) acquired in September 1994was 60%
in agreement with the field survey, and the discrimination
of high-altitude videographic data (approx. 2 m2 pixels)
acquired three weeks later was 68%in agreement with the
field survey. This level of discrimination improved to 78~
following the application of image texture processing to
derive homogeneity measures over small windows (5 by 5
pixels). Mapping accuracy, based on tests of the 21 field sites
classified with a modified unsupervised algorithm applied
to the 1993TM data, was approximately 67% correct. This
is consistent with previous studies on satellite remote
sensing of budworm damage (see, for example, Franklin
and Raske,1994)and isprobably closeto the maximum level
of accuracy that can be achieved with these methods and
data across this range of forest types and defoliation condi-tions.

A significant increase in discrimination was observed (to
86% correct) when an account of variations in initial stand
structure was ~ade using the Tasseled Cap transformation
of the georeglstered 1988 TM data. This improvement is
c?mparable t? that reported elsewhere following stratifica-
tion of satellIte sensor data by forest inventory data (Ek-

strand, 1994;Franklin and Raske, 1994).A logicalnext step
would be to drive a satellite image classificationbased on
training data derived from the aerial videographic image
analysis without requiring additional, or perhaps any,
ground-based field surveys.

ACKNOWLEDGEMENTS

This research was funded in part by the Ecology,Biology,
and Atmospheric Chemistry Branch, Terrestrial

EcologyProgram,of NASA(Grant# W-18,020),the NSF-
sponsored H.J. Andrews Forest LTER Program (BSR 90-
11663),and the GlobalChangeResearchProgramand In-
ventory and Economics Program of the PNW Research
Station, USDAForest Service.Additional support was pro-
vided through the OSUCenter for Airborne Environmental
Analysis. The authors express their appreciation to Franz
Kroiher for assistance in the field. The first author was
supported by a University of Calgary Sabbatical Leave Fel-
lowship and a Natural Sciencesand Engineering Research
Council of Canada research grant.

REFERENCES

Ahem, F., J. Sirois, W. McColl, R Gauthier, T. Alfoldi, W.
Patterson, and T. Erdle. 1991a. "Progress Towards Im-
proved Aerial Defoliation Survey Methods by Using Elec-
tronic Imagers," PhotogrammetricEngineeringand Remote
Sensing,57:2,pp. 187-194.

Ahem, F., T. Erdle, D.A. MacLean, and I.D. Kneppeck.
1991b. "A Quantitative Relationship Between Landsat TM
Spectral Response and Forest Growth Rates," International
Journalof RemoteSensing,12(3):pp. 387-400.

Beaubien, J. 1994. "Landsat TM Satellite Images of For-
ests: From Enhancement to Classification," Canadian Journal
of Remote Sensing, 20(1): pp. 17-26.

Bobbe, T., D. Reed, and J. Schramek. 1993. "Georefer-
enced Airborne VideoImagery,"JournalofForestry,91(8):
pp. 34-37.

Bolstad, P.V. and T.M. Lillesand. 1991. "Semi-automated
Approaches for Spectral Class Definition," International
JournalofRemoteSensing,13(16):pp. 3157-3166.

Brockhaus, J.A., S. Khorram, RI. Bruck, M.V. Campbell,
and C. Stallings, 1992. "A Comparison of Landsat TM and
SPOT HRV Data for Use in Development of Forest Defolia-
tion Models," International JournalofRemoteSensing;13(16):
pp. 3235-3240.

Brockhaus, J.A., S. Khorram, R Bruck, and M.V. Camp-
bell. 1993. "Characterization of Defoliation Conditions
Within a Boreal Montane Forest Ecosystem," GeoCartoInter-
national,8(1): pp. 35-42.



Bucheim, M.P. and T.M. Lillesand. 1989. "Semi-auto-
mated Training Field Extraction and Analysis for Efficient
Digital Image Classification," PhotogrammetricEngineering
andRemoteSensing,55(9):pp. 1347-1355.

Bucheim, M.P., AL. Maclean, and T.M. Lillesand. 1985.
"Forest Cover Type Mapping and Spruce Budworm
)efoliation Detection Using Simulated SPOT Imagery,"

ehotogrammetric Engineering and Remote Sensing, 51(8): pp.
1115-1122.

Cohen, W.B.1995. "GIS Application Perspective: Current
Research on Remote Sensing of Forest Structure," Forest
EcosystemManagement at the LandscapeLevel: The Role of
Remote-Sensingand Integrated GIS in ResourceManagement
Planning,Analysis,and DecisionMaking. Washington: Island
Press, in press.

Cohen, W.B., T.A Spies, and M. Fiorella. 1995. "Estimat-
ing the Age and Structure of Forests in a Multi-ownership
Landscape of Western Oregon," InternationalJournalof Re-
moteSensing,in press.

Cohen, W.B. and T.A Spies. 1992. "Estimating Structural
Attributes of Douglas-Fir /Western Hemlock Forest Stands
from Landsat and SPOT Imagery," RemoteSensingof En-
vironment,41: pp. 1-17.

Crist, E.P. and RC. Cicone. 1984. "A Physically-based
Transformation of Thematic Mapper Data - The TM Tas-
seled Cap," IEEE Transactions on Geoscience and Remote
Sensing,GE-22(3):pp. 256-263.

Crist, E.P.,R Laurin, and RC. Cicone. 1986."Vegetation
and Soils Information Contained in Transformed Thematic
Mapper Data," Proceedings,IGARSS '86, 6th International
Geoscience and Remote Sensing Symposium, ESA Pub!. Div.,
Zurich, Switzerland, September 8-11, pp. 1465-1470.

Decision Images Inc. 1989. ResourceImaging Graphics Sys-
tem Software, v. 3.24, Princeton, New Jersey.

Ekstrand,S.P. 1990. "Detection of Moderate Damage on
Norway Spruce Using Landsat TM and Digital Stand Data,"
IEEE Transactionson Geoscienceand RemoteSensing,28(4):
685-692.

Ekstrand, S.P. 1994. "Assessment of Forest Damage with
Landsat TM: Correction for Varying Forest Stand Charac-
teristics," RemoteSensingof Environment,47:pp. 291-302.

Fiorella, M. and W.J. Ripple. 1993. "Determining Succes-
sional Stage of Temperate Coniferous Forests with Landsat
Satellite Data," Photogrammetric Engineering and Remote
Sensing,59(2):pp. 239-246.

Franklin,J.F.and C.T.Dyrness.1973.Natural Vegetation
of Oregonand Washington.PacificNorthwestForestandRange
Expt. Stat., USDA Forest Service General Tech. Report
PNW-8.

Canadian Journal of Remote Sensin~Journal canadien de teledetection

Franklin, S.E. 1989. "Classification of Hemlock LooRer
Damage Using SPOT HRV Imagery," CanadianJournal of
RemoteSensing,15(3):pp. 178-182.

Franklin, S.E. and D.R Peddle. 1987. "Texture Analysis
of Digital Image Data Using Spatial Co-occurrence," Com-
puters& Geosciences,13(3):pp. 293-311.

Franklin, S.E. and D.R Peddle. 1990. "Classification of
SPOT HRV Imagery and Texture Features," International
Journal of Remote Sensing, 11(3): pp. 551-556.

Franklin, S.E. and A. Raske. 1994. "Satellite Remote
Sensing of Spruce Budworm Forest Defoliation in Western
Newfoundland," Canadian Journal of Remote Sensing, 20(1):
pp.37-48.

Ghitter,G.5;, W.W. Bowers, and S.E. Franklin. 1995. "Dis-
crimination of Adelgid-Damage on Single Balsam Fir Trees
with Aerial Remote Sensing Data," International Journalof
RemoteSensing,in press.

Goward, S.N., D.L. Williams, and D.L. Peterson. 1994a.
"NASA Multisensor Aircraft Campaigns for the Study of
Forest Ecosystems," RemoteSensingof Environment,47: pp.
107-108.

Goward, S.N., K.F. Huemmrich, and RH. Waring. 1994b.
"Visible-Near Infrared Spectral Reflectance of Landscape
Components in Western Oregon," RemoteSensingof En-
vironment,47: pp. 190-203.

Hall, F.G., D.E. Strebel, J.E. Nickeson, and S.J. Goetz.
1991. "Radiometric Rectification: Toward a Common
Radiometric Response Among Multidate, Multisensor Im-
ages," Remote Sensing of Environment, 35: pp. 11-27. .

Haralick, R.M. 1979. "Statistical and Structural Ap-
proaches to Texture," Proceedings,IEEE, 67(5):pp. 786-804.

Jarvis, P.G. and J.W. Leverenz. 1983. "Productivity of
Temperate,Deciduousand EvergreenForests,"Physiologi-
cal Plant Ecology IV, O.L.Lange, C.B.Omond, and H. Zeigler
(OOs.).NY: Springer Verlag, pp. 133-144.

Khorram, 5., J.A Brockhaus, R.I. Bruck, and M.V. Camp-
bell. 1990. "Modeling and Multitemporal Evaluation of For-
est Decline with Landsat TM Digital Data," IEEE Transac-
tions on Geoscienceand RemoteSensing,28(4):pp. 746-748.

King, D. 1992. "Evaluation of the Radiometric Quality,
Statistical Characteristics and Spatial Resolution of Multi-
spectral Videography," Journalof Imaging Scienceand Tech-
nology,36(4):pp. 394-404.

Leckie, D.G. and D.P. Ostaff. 1988. "Classification of
Airborne Multispectral Scanner Data for Mapping C~ent
Defoliation Caused by the Spruce Budworm," Forest SCIence,
34(2): pp. 259-275.

---



- __.._u . _ __ . .........

,
~ol:21, No. J, August/amit 1'J'JS

Leckie, D.G., P.M. Teillet, G. Fedosejevs, and D.P. Ostaff.
1988. "Reflectance Characteristics of Cumulative Defolia-
tion of Balsam Fir," CanadianJournalofForestResearch, 18(8):
pp.1008-1016.

Leckie, D.G., X. Yuan, D.P. Ostaff, H. Piene, and D.A.
MacLean. 1992. "Analysis of High Resolution Multispectral
MEIS Imagery for Spruce Budworm Damage Assessment
on a Single Tree Basis," Remote Sensing of Environment, 40:
pp. 125-136.

Marsh, S.E., J.L. Walsh, and C. Sobrevila. 1994. "Evalua-
tion of Airborne Video Data for Land-Cover Classification
Accuracy Assessment in an Isolated Brazilian Forest," Re-
mote Sensing of Environment, 48: pp. 61-69.

McCaffrey, T.M. and S.E. Franklin. 1993. "Automated
Training Site Selection for Large Area Remote Sensing
Image Analysis," Computers & Geosciences,19(10): pp. 1413-
1428.

McCreight, R., C.F. Chen, and R. Waring. 1994. "Airborne
Environmental Analysis Using an Ultralight Aircraft," Pro-
ceedings,lst International Airborne Remote Sensing Conference,
Strasbourg, France, September 11-15, 1994,Vol. I, pp. 384-
392.

Muchoney, D.M. and B.N. Haack. 1994. "Change Detec-
tion for Monitoring Forest Defoliation," Photogrammetric
Engineering and Remote Sensing, 60(10):pp. 1243-1251.

Neale, C.M.U. and B.G. Crowther. 1994. "An Airborne
Multispectral Video/Radiometer Remote Sensing System:
Development and Calibration," RemoteSensingof Environ-
ment,49: pp. 187-194.

PCI Inc. 1993. EASI/PACE ImageProcessingSystemSoft-
ware, v. 5.2, Richmond Hill, Ontario.

-- -

Peterson, D.L. and RH. Waring. 1994. "Overview of ~he
Oregon TransectEcosystemResearchProject,"Ecole1gical
Applications,4: pp. 211-225.

Pierce, L.L.and S.W. Running. 1988."Rapid Estimation
of Coniferous Forest Leaf Area Index Using a Portable
Integrating Radiometer," Ecology,69:pp. 1762-1767.

Process Software Solutions Pty. 1993. DIMPLE Digital
Image Processing System Software, v. 2.1, Wollongong,
Australia.

Rees, W.G. 1990. Physical Principles of Remote Sensing.
Cambridge: University Press, 247 pp.

Richter, R 1990. "A Fast Atmospheric Correction Algo-
rithm Applied to Landsat TM Images," International Journal
ofRemoteSensing,11(1):pp. 159-166.

Rock, B.N., T. Hoshizaki, andJ.R Miller. 1988. "Compari-
son of In Situ and Airborne Spectral Measurements of the
Blue Shift Associated with Forest Decline," RemoteSensing
of Environment,24: pp. 109-127.

Runyon, J.R, RH. Waring, S.N. Goward, and J.M.
Welles. 1994. "Environmental Limits on Net Primary Pro-
duction and Light-Use Efficiency Across the Oregon Trans-
ect," EcologicalApplications,4(2): pp. 226-237.

Yuan, X., D. King, and J. Vlcek. 1991. "Sugar Maple
Decline Assessment Based on Spectral and Textural Analy-
sis of Multispectral Aerial Videography," RemoteSensingof
Environment,37,pp. 47-54.


