

Environmental Information Management and Analysis: Ecosystem to Global Scales

Edited by

William K. Michener,¹ James W. Brunt,² and Susan G. Stafford³

¹Joseph W. Jones Ecological Research Center Route 2, Box 2324 Newton, GA 31770

²Department of Biology University of New Mexico Albuquerque, NM 87131-1091

³Department of Forest Science Oregon State University Corvallis, OR 97331-7501

555p.

UK Taylor & Francis Ltd. 4 John St. London WCIN 2ET USA Taylor & Francis Inc., 1900 Frost Road, Suite 101, Bristol PA 19007

Copyright © Taylor & Francis Ltd 1994

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 7484 0123 7 (cased)

Library of Congress Cataloging in Publication Data are available

Cover design by Amanda Barragry

Typeset by RGM, Southport

Printed in Great Britain by Burgess Science Press, Basingstoke on paper which has a specified pH value on final paper manufacture of not less than 7.5 and is therefore 'acid free'.

Contents

List of figures	. 1	i
List of tables	,	X
Preface		xvi
Contributors		XN

n

.1

11

٠,

SECTION I A RESEARCH PERSPECTIVE

- 1 Integration of scientific information management and environmental research Susan G. Stafford, James W. Brunt and William K. Michener
- 2 Grand challenges in scaling up environmental research James H. Brown
- 3 Sustainable Biosphere Initiative: Data management challenges James R. Gosz
- 4 Multiple roles for GIS in global change research: Towards a research agenda Dennis E. Jelinski, Michael F. Goodchild and Louis T. Stevaert

SECTION II SCIENTIFIC DATABASES AND INFORMATION SYSTEMS

- 5 Scientific information systems: A conceptual framework Donald E. Strebel, Blanche W. Meeson and Alan K. Nelson
- 6 Development and refinement of the Konza Prairie LTER Research Information Management Program John M. Briggs and Haiping Su
- 7 Forest health monitoring case study

vi	Contents			Contents
	Charles I. Liff, Kurt H. Riiters and Karl A. Hermann		18	Evaluation of soil database attributes in a terrestrial carbon cycle model: Implications for
8	Bigfoot: An earth science computing environment for the Sequoia 2000 Project James Frew	113		global change research Christopher S. Potter, Pamela A. Matson and Peter M. Vitousek
9	Representing spatial change in environmental databases John L. Pfaltz and James C. French	127	19	Designing global land cover databases to maximize utility: The US prototype Bradley C. Reed, Thomas R. Loveland, Louis T. Steyaert, Jesslyn F. Brown,
SECTION III	QUALITY ASSURANCE/QUALITY CONTROL		•	James W. Merchani and Donald O. Ohien
10	Automated smoothing techniques for visualization and quality control of long-term environmental data Scott E. Chapal and Don Edwards	141	20	Global environmental characterization: Lessons from the NOAA-EPA Global Ecosystems Database Project
t i	Spatial sampling to assess classification accuracy of remotely sensed data Gretchen G. Moisen, Thomas C. Edwards, Jr and D. Richard Culler	159	SECTION VI	ENVIRONMENTAL MODELLING AND GEOGRAPHIC INFORMATION SYSTEMS
12	Metadata required to determine the fitness of spatial data for use in environmental analysis Nicholas R. Chrisman	177	21	Integrating geographic information systems and environmental simulation models: A status review Louis T. Steyaert and Michael F. Goodchild
SECTION IV	DATA SHARING ISSUES		22	Data management and simulation modelling Thomas B. Kirchner
13	Circumventing a dilemma: Historical approaches to data sharing in ecological research	193	23	GIS and spatial analysis for ecological modelling <i>Richard J. Aspinall</i>
14	Sharing spatial environmental information across agencies, regions and scales: Issues and solutions John Evans	203	24	Linking ecological simulation models to geographic information systems: An automated solution Martha B. Coleman, Tamara L. Bearly, Ingrid C. Burke and William K. Lauenroth
15	Standards for integration of multisource and cross-media environmental data Rodney I. Slagle	221	25	Comparison of spatial analytic applications of GIS David P. Lanter
	Nouncy L. Single		SECTION VII	NEW ANALYTICAL APPROACHES
SECTION V	DATABASES FOR BROAD-SCALE RESEARCH		26	GIS development to support regional simulation
16	Alternative approaches for mapping vegetation quantities using ground and image data Jennifer L. Dungan, David L. Peterson and Paul J. Curran	237		modelling of north-eastern (USA) forest ecosystems Richard G. Lathrop, Jr, John D. Aber, John A. Bognar, Scott V. Ollinger, Stephane Casset and Jennifer M. Ellis
17	Global biosphere requirements for general circulation models <i>Bruce P. Hayden</i>	263	27	Remote sensing and GIS techniques for spatial and biophysical analyses of alpine treeline through process and empirical models

		Daniel G. Brown, David M. Cairns, George P. Malanson, Stephen J. Walsh and David R. Butler		 L :a	t of figures
	28	Using a GIS to model the effects of land use on carbon storage in the forests of the Pacific Northwest, USA Warren B. Cohen, Phillip Sollins, Peter Homann, William K. Ferrell, Mark E. Harmon, David O. Wallin and Maria Fiorella	483	L1S	A new dynamic between science and technology has forced evolution of the way in which environmental information is
	29	Coupling of process-based vegetation models to GIS and knowledge-based systems for analysis of vege- tation change David Miller	497	1.2 5.1	now managed and analysed. Analytical and storage capabilities accessible from the future user's desktop. The information system management council should bring
-	30	A knowledge-based approach to the management of geographic information systems for simulation of forested ecosystems D. Scott Mackay, Vincent B. Robinson and Lawrence E. Band	511	5.2	together representatives of the scientific community, funding agency management and information system staff for frank, open, direct and frequent interactions. The analogy between data publication and publication of scientific research results
	31	Detecting fine-scale disturbance in forested ecosystems as measured by large-scale landscape patterns	535	5.3	Three personnel scenarios for handling 50 data sets, each of which requires 26 weeks of human effort to achieve maturity.
		G.A. Bradshaw and Steven L. Garman	555	5.4	long after they are collected or submitted.
		Subject index	551	5.5	Data flow diagram illustrating how data matured in the FIFE information system.
				6.1	Konza Prairie research experimental design.

6.2 Data requests to Konza Prairie LTER data manager from 1984 to 1993 from non-Konza LTER investigators.

f

1.

- Location of 1992 FHM detection monitoring activities. 7.1
- Location of 1992 FHM pilot and demonstration activities. 7.2
- 7.3 FHM information management system data flow.
- 8.1 The Sequoia 2000 layered architecture.
- 9.1 Area as a function of some variable x.
- The derivative of the function of Figure 9.1. 9.2
- 9.3 Pixels from three images of shrub thickets.
- Pixel differences of images shown in Figure 9.3. 9.4
- Approximating ellipses for areas shown in Figure 9.3. 9.5
- 9.6 Vector field denoting change of a spatial boundary.
- Observed area values and the finite difference structure. 9.7
- 10.1 Flow diagram of the components of research data management taken from the North Inlet LTER, illustrating the integral importance of quality assurance.
- 10.2 AIC versus the number of model parameters for Method I (parametric) (a), Method II (seasonal semiparametric) (b), and