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Abstract 

A contagion index was proposed by O’Neill et al. (1988) to quantify spatial patterns of landscapes. However, 
this index is insensitive to changes in spatial pattern. We present a new contagion index that corrects an error 
in the mathematical formulation of the original contagion index. The error is identified mathematically. The 
contagion indices (both original and new) are then evaluated against simulated landscapes. 

Introduction 

A robust landscape index should quantify two dis- 
tinct components of landscape diversity: composi- 
tion and configuration (Li 1989). Composition 
refers to both the total number of patch types and 
their relative proportions in the landscape, whereas 
configuration refers to the spatial pattern of 
patches in the landscape. If an index only depicts 
composition its usefulness is limited because many 
existing indices do just that (e.g., Pielou 1975). And 
spatial configuration and its effects on landscape 
function are key topics of landscape ecology (Risser 
et al. 1984; Forman and Godron 1986). 

A contagion index (D,) was proposed by O’Neill 
et al. (1988; Also Turner and Ruscher 1988; Turner 
1989; Turner et al. 1990a; Turner 1990b; Graham 
et al. 1991) to characterize landscape pattern: 

D, = EEmaX-EE 

where 

EE,, = 2 n ln(n) (2)  

n n  

where n is the total number of patch types in a land- 
scape mosaic, Pij is the probability of patch type i 
being adjacent to patch type j ,  and EE,,, is the 
maximum of EE if there is an equal probability of 
any land-use type being adjacent to a randomly 
chosen point in the landscape (O’Neill et al. 1988). 
Note that EE is positive and has the same form as 
the information index (Pielou 1975). According to 
O’Neill et al. (1988), contagion measures the extent 
to which landscape elements are aggregated or 
clumped; higher values of contagion may result 
from landscapes with a few large, contiguous 
patches, whereas lower values generally character- 
ize landscapes with many small patches. 

In this paper, we show that an error exists in the 
definition of EE,, (Eq. 2), which is a critical 
problem because it affects the sensitivity of D, to 
changes in landscape configuration. We introduce 
an alternative contagion index that corrects this er- 
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ror and tends to distinguish between landscape 
composition and configuration. 

Estimates of Pij 

We define a landscape mosaic as the distribution of 
n patch types among N pixels. Two methods can be 
used to estimate Pij based on the definition that Pij 
is the probability of patch type i being adjacent to 
patch type j. First, we assume that Pij is the condi- 
tional probability that, given a pixel is of patch type 
i, one of its neighboring pixels belongs to patch type 
J ,  1.e.: . .  

where PjIi is the conditional probability, Nij the 
number of adjacencies (joins) between pixels of 
patch types i and j,  and Ni the total number of ad- 
jacencies between pixels of patch type i and all 
patch types (including patch i itself). Thus, we have 

n 
C N.. = Ni 

11 j = l  

and, therefore 

n 
C Pij = 1 

j = l  

O’Neill et al. (1988) did not provide information on 
how to estimate Pij, but an equation similar to Eq. 
4 was used to estimate Pij (Robert O’Neill, pers. 
comm.). 

Second, we can assume that Pij is the probability 
that two randomly chosen adjacent pixels belong to 
type i and j,  respectively, i.e.: 

p.. l] = p.p. 1 ]/1 . (6) 

where Pi is the probability that a randomly chosen 
pixel belongs to patch type i (estimated by the 
proportion of patch type i), and PjIi is the same as 
in Eq. 4. Here, 

(7) 

(see Appendix for details). Pij is similar to the 
probability used by information indices, especially 
Shannon’s conditional entropy (Shannon and 
Weaver 1949) and Pielou’s index of mosaic’s spa- 
tial diversity (Pielou 1975). 

The erroneous maximum term (EE,,,,,) 

The critical error in the D, (Eq. 1) is that the maxi- 
mum of EE does not equal EE,, defined by Eq. 
2. Here, we present two proofs: one being an intui- 
tive argument based on the property of an informa- 
tion index, and the other being a more formal 
mathematical proof. 

The intuitive argument. According to informa- 
tion theory, EE should have its greatest value when 
each Pij is equal to a constant (e.g., Shannon and 
Weaver 1949; Pielou 1975). Therefore, we can as- 
sume that EE is maximum when Pij = p (a cons- 
tant). Substituting p for Pij in Eq. 3,  we have 

n n  

hence, 

The p value is dependent on how Pij is estimated. 
First, we assume that Pij is defined by Eq. 4. Based 
on the same property of information theory men- 
tioned above, we assume that all patch types are of 
even proportion, that is, Pi = l /n for all i, where 
Pi is the probability that a randomly chosen pixel 
belongs to type i. Thus, the necessary and sufficient 
condition for EE to be at its maximum value is 

P.. 11 = p = l/n (9) 

Substituting l/n for p in Eq. 8, we have 

EE,, = - n2[(l/n) ln(l/n)] 



157 

hence, expressed as double summation (Li 1966), Jensen’s 
inequality can be expanded and rewritten as: 

EE,, = n ln(n) (10) 
n n  n n  

Second, we assume that Pij is defined by Eq. 6. Un- 
der the assumptions of the even proportion of each 
patch type and the completely random pattern, Pj,i 
is independent of Pi and equal to l/n. Now, the 
necessary and sufficient condition for EE to be at 
its maximum value is 

Substituting l/n2 for p in Eq. 8, we have 

EE,,, = - n2[(l/n2) ln(l/n2)] 

and, hence 

EE,, = 2 ln(n) (12) 

Eq. 10 differs from Eq. 2 by a factor of 2,and Eq. 
12 by a factor of n. Thus, we conclude that EE,, 
defined in Eq. 2 is not the maximum of EE. Notice 
that our conclusion is not affected by the definition 
of Pij in Eq. 3. The above reasoning is easily under- 
standable, but lacks generality due to requirement 
of many assumptions. 

The mathematical proof. Assuming that Pij is 
expressed by Eq. 6, we give a formal mathematical 
proof that the maximum of EE is given by Eq. 12. 
Jensen’s inequality is expressed as (Hardy et al. 
1952): 

n n 

where f is a convex, monotonic function in the 
range [a,b], 5 can be any value in the range [a,b], 
and qi is positive with the condition 

n 
C q i = l  

i = l  

In Eq. 13, the equality holds only if the xi’s are 
equal for all i. Based upon the algebraic fact that 
any single summations can be re-arranged and then 

given 

n n  

Without any loss of generality, we can define 

115) 

f(xij) = xij ln(xij) (17) 

and 

Notice that the function in Eq. 17 is a convex, 
monotonic function in the range (0’11. Substituting 
Eq. 7 and Eqs. 15-18 for the corresponding terms 
in Eq. 14 (Le., the expanded Jensen’s inequality), 
we have 

n n  
- C C Pij ln(Pij) 5 2 ln(n) 

i = l  j = 1  

(see Appendix for details). Notice that the left side 
term in Eq. 19 is EE. Therefore, we come to the 
same conclusion that the maximum value of EE is 
not expresses by Eq. 2, but by Eq. 12, provided that 
Pij is given in Eq. 6. Similar proof can be given 
when we assume that Pij is given in Eq. 4, and the 
result should confirm Eq. 10. 

Our conclusion is supported by the work of 
Gatrell(1977). He proposes a complexity (or uncer- 
tainty) index, Hmap: 

n n  

where n is the number of colors, and Pij is the joint 
probability of colors (or patches) i and j (Gatrell 
1977). Gatrell’s Pij in Eq. 20 is similar to Pij in 
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Eq. 6, and H,,!, is similar to EE in Eq. 3. He has 
shown, using binary maps as examples, that the 
maximum of Hmaq is constrained by the marginal 
probabilities and differs with different sets of Pi’s. 
He suggests that Pij can be calculated by assuming 
that Pi’s are statistically independent, that is, Pij = 
Pipj. He also points out without proof that the 
maximum of Hmap is “2 ln(n)”, provided that Pi 
= l/n. 

An alternative contagion index 

We propose a new contagion index: 

RC = 1 -EE/EE,,, (21) 

where RC is the relative contagion, EE is defined in 
Eq. 3, and EE,, is the maximum of EE defined 
by Eqs. 10 or 12, depending on the definition of 
Pij. Eq. 21 has been used by authors who originally 
proposed D, (Robert O’Neill, pers. comm.). If Pij 
is given by Eq. 4, then 

n n  
RC1 = 1 + C C Pij ln(Pij) / n ln(n) (22) 

i = l  j = l  

If Pij is given by Eq. 6, then 

n n  
RC2 = 1 + C C Pij ln(Pij) / 2 ln(n) (23) 

i = l  j = 1  

All terms on the right side of Eqs. 21,22, and 23 are 
the same as defined above. Note that the correct 
maximum term (EE,,) is used in the new relative 
contagion index given by Eq. 22 or 23 and that Eq. 
1 has no upper limit, whereas contagion as defined 
in Eq. 21 is a relative index, ranging from 0 to 1. RC 
is in essence a function of an evenness index, 
EE/EE,,; thus, it has all the advantages and dis- 
advantages of an evenness index (see Hurlbert 
1971). 

EE (Eq. 3) can be used alone as an index of spa- 
tial pattern (Robert O’Neill, pers. comm.). There is 
a strict, linear, inverse relationship between EE and 
RC; thus, EE has all the spatial information that 

RC has. The only other difference between the two 
is that RC is an evenness index, and is scaled to 
compare landscapes with different values of n 
(Turner et al. 1989). 

Evaluation of contagion 
landscapes 

To evaluate and compare 

indices using synthetic 

- 
the performance of RC 

and D,, we generated a series of landscape maps 
with different components of composition and con- 
figuration. The maps were composed of the land- 
scape matrix (empty = patch type 1) and one or 
more other patch types (patch types 2, 3, and up to 
10); see Fig. 1). Following the algorithm described 
in Li (1989; Li et al. 1992), for each of three config- 
urations (“random”, “uniform”, and “aggregat- 
ed”) nine maps were created by introducing one 
patch type to the landscape matrix at a time; each 
patch type (except patch type 1) covered 8% of the 
total area (see Fig. 1). For example, the first map 
had two patch types, 1 and 2 (covering 92% and 8% 
respectively); the second three types, 1, 2, and 3 
(covering 84070, 8%, and 8% respectively); etc. 
Values of the three contagion indices as a function 
of different components of landscape composition 
and configuration is illustrated in Fig. 2. 

D, fails to distinguish differences in the three 
spatial configurations (Fig. 2a). In theory, con- 
tagion has a spatial component in EE (Eq. 3), thus, 
changes in contiguity are reflected only by changes 
in EE. The failure of D, is because the inflated 
EE,, (a function of the number of patch types) 
greatly outweighs EE (a function of the spatial con- 
figuration). This is also evidenced by the linear in- 
crease of D, with increase of the number of patch 
types. This increase of D, contradicts the defini- 
tion of the contagion index, i.e., contagion should 
decrease as many small patches of different types 
are introduced to the landscape and as the land- 
scape matrix is broken into many smaller pieces. 
These results suggest that the D, is not a good in- 
dex of spatial configuration because it primarily 
reflects landscape composition (e.g., number of 
patch types) and is insensitive to spatial configu- 
ration. 
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Fig. 2. Relationships between the contagion indices and the two 
controlled variables: spatial pattern and number of patch types. 
D,, RCI, and RCI are the original contagion index (Eq. 1)  and 
the new, relative contagion indices (Eqs. 22 and 23), respective- 
ly. See the text for details. Notice that there is a decreasing gra- 
dient of evenness of the proportions of patch types (from 0.29 
to 0.09) along the x axis. 

RCl varies with different spatial configurations 
(Fig. 2b) but does not change much with the in- 
crease in the number of patch types, due to the 
method used to estimate Pij (Eq. 4). RC1 is a good 

index if the objective is to compare spatial configu- 
ration of landscapes regardless of how many patch 
types they have; RCl may not be appropriate to 
characterize the overall contiguity of landscapes be- 
cause contagion should decrease with increase in 
the number of patch types, as discussed above. In 
contrast, RC2 distinguishes the three different spa- 
tial configurations and is sensitive to the increase in 
the number of patch types (Fig. 2c). Hence, RC2 is 
the only index that is quantifies both components 
of landscape diversity. 
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Appendix 
n n  

1. Derivation of Eq. 7: C C Pij = 1 
i = l  j = 1  

Assume that Ai is the total area (or total number of pixels) of 
patch type i and A the total area of the landscape. Then, the 
probability that a randomly chosen pixel belongs to patch type 
i can be estimated by the proportion of patch type i: 

and therefore 

n n  n n 

Note that, according to our definitions above, we have 

n 

i =  1 
C A i = A  

and 

n 
C Nij = Ni 

j = 1  
(A.4) 

Substituting Eqs. A.3 and A.4 in Eq. A.2, we have 

n n  

n n  
2. Derivation of Eq. 19: - C C Pij ln(Pij) 5 2 ln(n) 

i = l  j = l  

We start with reconstructing the left and right sides of Jen- 
sen’s inequality (Eq. 14) separately. Substituting Eqs. 16, 17, 
and 18 for the left side terms in Eq. 14, we obtain 

n n  n n  

hence, 

n n  n n  

Substituting Eqs. 11, 15 and 17 for the right side terms in Eq. 
14, we have 

n n  n n 

n n 

hence, 

and therefore 
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n n  

Replacing both sides in Jensen’s inequality (i.e., Eq. 14) with the 
results from Eqs. A S  and A.6, we obtain 

n n  

hence, 

n n  

and therefore 

n n  


