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DESCRIPTION AND ANALYSIS OF SPATIAL PATTERNS

Graciela Garcia-Moliner, Doran M. Mason, Charles H. Greene, Agustin Lobo,
Bai-lian Li, Jianguo Wu, and G. A. Bradshaw

INTRODUCTION

Spatial pattern is a conspicuous characteristic of any ecosystem and has received much
attention from researchers over the last decade and a half (e.g., Steele 1978, Pickett and
White 1985, Kolasa and Pickett 1991), most recently under the name of landscape ecology
(Forman and Godron 1986, Turner and Gardner 1991). Description of patchiness in marine,
freshwater, and terrestrial systems presents different problems, particularly in terms of
mechanisms of patch formation (e.g., Wiens 1976 and Pickett and White 1985 in terrestrial
systems; and Legendre and Demers 1984, Mackas et al. 1985, Hamner 1988, Barry and
Dayton 1991, and Downing 1991 in aquatic systems). Deutschman et al. (this volume)
supply specific examples of mechanisms of patch formation.

In this chapter we attempt to describe patchiness in ecosystems and a set of analytical
tools useful for the study of spatial pattern across different scales and systems. Specifically,
we address three topics: (1) the description of patches in relation to scale, (2) sampling a
patchy environment, and (3) the analysis and interpretation of spatial data. Additionally,
marine and terrestrial ecosystems will be contrasted and compared to elucidate the inherent
differences between the two very different systems.

PATCHES AND PATCHINESS

Description of a "Patch:" The Terrestrial Concept

When the distribution of a phenomenon on land becomes discontinuous, the system is
considered to be "patchy." A patch at the landscape scale may contain a certain number of
within-community patches consisting of aggregates of physical entities and biological
individuals, which in turn may exhibit patchiness on finer scales—a "hierarchical scheme"
(Wiens 1976). At the community level, a patch may consist of a tree gap or a gopher
mound. Although all patches are realistically three-dimensional, humans generally perceive
patches in lower dimensionality. The term patch typically tends to emphasize spatial
discontinuity and internal homogeneity, but patches may vary greatly in geometry, content,
heterogeneity, and boundary characteristics.
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Patchiness: The Marine Concept
•

The terrestrial phenomenon of a discontinuous patch has dominated the landscape literature.
However, ecological processes in the ocean associated with spatio-temporal scales of water
movement reveal "patchiness" rather than patches. These are dealt with through the Stommel
diagrams (Haury et al. 1978) revised by Marquet et al. (this volume). The inherent
fluid-dynamic nature of the environment necessitates a different set of criteria (Legendre and
Demers 1984). Patches in the sea are best defined by the purpose of the study, the processes
that create the patch, and the scale of the sampling. This is an indication of basic differences
in the terrestrial and marine systems; or between substrate-dependent (intertidal and benthic)
and substrate-independent (pelagic) systems. From this perspective, the intertidal and benthic
marine ecosystems are viewed in a similar manner to terrestrial systems, defined in terms of
the absence of an entity or open space where the boundaries are often discrete. Intertidal
zones where high-energy wave activity removes assemblages of organisms and leaves behind
a barren patch open for colonization (Paine and Levin 1981) are similar to gaps in forest
stands.

Pelagic organisms and plants are often aggregated through physical, chemical, and
behavioral processes. Physical phenomena such as fronts and Langmuir circulation can
produce linear concentrations of planktonic organisms (e.g., Denman and Powell 1984,
Mackas et al. 1985).

SAMPLING

One of the main problems in describing patchiness is the large rate of spatial change in the
ocean, compared to terrestrial systems. As a result, there have to be major differences in the
sampling design. The physical factors include: three-dimensional motion; absence of physical
barriers to vertical and horizontal migration (Hamner 1988); low requirement of structural
support for biota due to high specific gravity of water (Parsons 1976); . and damping of
short-term thermal variability due to high specific heat content of water (Steele 1985).
Differences between the two systems' biology include: dominance of poildlotherms at the
higher trophic levels; life history strategies (Steele 1985); and the small size of primary
producers vs. the large size of primary producers of terrestrial ecosystems (Issacs 1977). It
is these differences that present distinct sampling challenges in marine and terrestrial
ecosystems.

The results of these differences are evident in the data obtained and, in consequence,
in the methods used in analysis. Thus, it is relatively easy to run long transects on a ship
sampling continuously for certain physical and biological parameters. This allows the use of
data-intensive analytical methods such as Fourier analysis. On the other hand, there are
problems in the temporal resolution of these time series: Are they truly synoptic?

On land it is usually extremely difficult to get long transects, and so methods such as
geostatistics have been developed (see van Es, this volume). However, the problems in
reconciling spatial and temporal variability are very much less on land.

In both sectors, satellite imagery can provide an entirely new, and different, view of
each environment. Thus, in the ocean, color data has provided details of the two-dimensional
fine structure and has radically altered our perceptions of smaller scale structure. On land,
the opposite is true, and remote sensing has opened up the potential for large-scale analysis
and modeling.
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ANALYSIS TECHNIQUE, DATA SETS, AND EXAMPLES

Conventional statistical techniques, such as ANOVA, are not well suited for use on spatial
data sets due to the assumptions of independence and normality. In spatially derived data sets,
observations are generally not independent but rather are spatially correlated at some scale of
resolution. Thus, other techniques must be used when analyzing spatial data sets. The
analytical techniques for the study of spatial patterns or the variability in patchiness treated
in this chapter include autocorrelation function (ACF), power spectra, wavelets, multivariate
analysis, empirical orthogonal functions (EOF), and fractals.

A general review on description and analysis of the determination of spatial pattern on
land can be found, for example, in Legendre and Fortin (1989) and references therein (see
also van Es, this volume). In the oceans, power spectral analysis is probably the most widely
used technique for pattern recognition with transect data (e.g., Platt and Denman 1975, Barale
and Trees 1987, Barale 1987). Deutschman et al. (this volume) have analyzed krill data using
both spectral analysis and wavelet transforms (see also the section on wavelet analysis later
in this chapter) and in addition have developed a model (discussed in Griinbaum 1991) to
describe the interactions between physical phenomena and behavioral interactions in Antarctic
krill. Overall, the coupling of biotic/abiotic phenomena is a major factor in determining
pattern and in differentiating pattern and process (Abbott, Denman, this volume).

Analyses of Time-Series and Spatial Series Data: The Autocorrelation Function
and the Spectral Density Function

The autocorrelation function (ACF) and the spectral density function (power spectrum) are
two of the most widely used diagnostic tools in signal processing (Jassby and Powell 1990).
The power spectrum is the Fourier transform of the autocovariance function. The power
spectrum decomposes the total variance in the data set into component contributions associated
with each wave number in the spatial range of interest. The estimated spectrum may exhibit
peaks at those wave numbers that contribute most to oscillations of the recorded variable in
space.

For shorter series, analysis of the ACF often provides more reliable results (Jassby and
Powell 1990). The ACF is used to quantify autocorrelations among points in a time series
or one-dimensional spatial series separated by different temporal or spatial lags.

These techniques are useful only for analyzing one-dimensional serial data (Chatfield
1984). For two-dimensional data sets there are two-dimensional Fourier methods and
geostatistics, but these essentially convert the data to one spatial scalar. The problem of
pattern recognition, which the human eye does so easily, is still analytically intractable (e.g.,
Mandelbrot 1983).

Examples from biological oceanography. Spectral analysis has a relatively long history
of use in physical oceanography, a field in which periodic phenomena are commonly
encountered (e.g., Stommel 1963). The method was introduced to biological oceanography
in the mid-1970s (Platt and Denman 1975) and has yielded a variety of interesting results for
theoretical ecologists to ponder (e.g., Steele 1985, Powell 1989).

Recently, Levin (1990) compared the spectra for Antarctic krill, temperature, and
chlorophyll data from the Southern Ocean (Figure 1). Temperature and chlorophyll spectra
were similar at all scales, but the bill spectrum was flatter at higher wave numbers (smaller
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spatial scales: less than 20 km): Levin hypothesized that this finding might be indicative of
physical processes driving the large-scale distributions of all three variables and of biological
processes, specifically active aggregation behavior, driving the krill distributional patterns at
smaller spatial scales.

With Levin's hypothesis in mind, we set out to analyze the fine-scale (meters to lOs
of meters) patterns of krill in a data set collected by Greene et al. (in press) from three
different sound-scattering layers (SSLs) in the Gulf of Maine (Figure 2). The species of krill
(Meganyctiphanes norvegica) studied in the Greene et al. investigation was different from the
species (Euphausia superba) discussed by Levin (1990) and by Deutschman et al. (this
volume). Although Meganyctiphanes norvegica is rarely found to school or actively aggregate
as intensively as Euphausia superba, we had some evidence of patchiness in the observed
fine-scale patterns (Table 1; Greene et al., in press). Therefore, we were interested in
determining whether or not the ACF could improve our characterization of the observed
fine-scale patchiness.

The results of the analyses did little to improve our characterization of the observed
fine-scale patchiness. The ACF was found to drop off rapidly with increasing spatial lag in
data from all three SSLs. In only four out of the 15 cases analyzed were the autocorrelations
significant at one lag interval (Table 2), and in no cases were they significant at two or more
lag intervals. These results suggest that the characteristic length scales of patches were less
than 1.5 - 3.0 m, and thus unresolvable by our sampling methods. The power spectra from
the three SSLs were found to be flat (Figure 3), indicating no obvious periodicities in the
observed fine-scale patchiness.
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Figure 1. Mean spectral plots for Antarctic krill, chlorophyll fluorescence, and temperature
from Levin (1990), as reprinted from Weber et al. (1986).



10

15

20

w 25U
O
z

Occ

U
z

C

10

15

20

25

74

DISTANCE ALONG TRANSECT (m)

0 5 10 15 20 25 30 35 .40 45 50 55 60 65 70

0	 > 2000
NUMERICAL DENSITY

(animals/I000

Figure 2. Fine-scale horizontal distributions of krill in a) daytime deep SSL (DDSSL), b)
nighttime deep SSL (NDSSL), and c) nighttime shallow SSL (NSSSL). Numerical densities
are given in units of animals per 1000 m3 (from Greene et al., in press).
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Table 1. Numerical density and spatial aggregation statistics for krill in daytime deep SSL
(DDSSL), nighttime deep SSL (NDSSL), and nighttime shallow SSL (NSSSL) from Gulf of
Maine. Estimates of mean numerical density and Lloyd's (1967) index of mean crowding are
given in units of animals per 1000 m'; Lloyd's index of patchiness is nondimensional.

Mean Numerical
Density (+2 SE)

Index of
Mean Crowding

Index of
Patchiness (+2 SE)

DDSSL 594 (26) 820 1.38 (0.04)
NDSSL 200 (18) 491 2.46 (0.24)
NSSSL 234 (18) 503 2.15 (0.16)

Index of Mean Crowding = x = (s2/iC - 1)(1 + On?)

Patchiness =	 + (s = s'/Z - 1)(1 + sYnit'-')/x

where Ft = mean, s2 = variance,
n =number of samples,
and 1 + s2/nx2 is the sampling bias correction factor.

Comparisons of Mean Numerical Densities Among SSL's (ANOVA and Duncan's
Multiple Range Test): DDSSL > NSSSL > NDSSL

Table 2. Autocorrelation at one spatial lag (1.5 m) for krill nighttime deep SSL (NDSSL),
and nighttime shallow SSL (NSSSL) from Gulf of Maine. An asterisk indicates statistically
significant autocorrelation; NS indicates nonsignificant autocorrelation.

21

Transect Distance from Transducer (m)

22	 23	 24 25

Autocorrelation

DDSSL 0.227 NS 0.216 NS 0.247 NS 0.116 NS 0.419 *
NDSSL 0.096 NS 0.136 NS 0.410 * 0.391 * 0.119 NS
NSSSL 0.182 NS 0.250 NS 0.247 NS 0.160 NS 0.527 *
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We infer from these results that, although Meganyctiphanes individuals exhibited
significant fine-scale patchiness in the three SSLs examined (Table 1), the krill aggregations
themselves tended to be relatively small and distributed more or less randomly in the
environment. Greene et al. (in press) concluded that this type of fine-scale patchiness would
be particularly difficult for predators to exploit in an efficient manner.

Wavelet Analysis

Wavelet analysis is a technique that has been employed for the analysis of spatial pattern and
time series (Mallat 1988, Argoul et al. 1989, Bradshaw 1991). Three functions comprise
wavelet analysis: the wavelet transform, wavelet variance, and the wavelet cross-covariance.
The wavelet transform is defined in one dimension in the continuous form as:

w(a,x) = 11 a ftx)g(x - bla)dx	 (l)
_•

where f(x) is the data function, g(x) is the analyzing wavelet, a is the scale, and b is the point
around which the wavelet is centered.

Similar to Fourier spectral analysis, the transform effects a scale-by-scale
decomposition of the data. In contrast to spectral analysis, the transform is a local filter and,
as a function of both scale, a, and position, x, it retains location information. Because of this
property, the wavelet transform can be used to examine the relationship of spatial pattern
across scales. This is particularly useful in cases where the data is hierarchical or multi-scalar
in structure or the data is non-uniformly distributed along the transect (Bradshaw and Spies,
in press). Thus, the presence and intensity of fine-scale features may be related to
higher-order structures at coarser scales.

As an example of the method, the wavelet transform was calculated for a transect
selected from a 1 m resolution digital image of a Douglas fir forest canopy in western
Cascades, Oregon (Figure 4). The wavelet transform provides a graphical display of the
hierarchical structure of the overall pattern: i.e., the pattern of the individual tree crowns at
one scale nested in a higher-order pattern at which the individual trees are clustered (Figure
5).

The analyzing wavelet may be selected from several possible functions given certain
admissibility requirements (e.g., Mexican hat and Haar wavelets, Daubechies 1988).	 For
example, if one is interested in the detection of gradients or edges, a step function such as the
Haar wavelet would be a suitable choice (Gamage 1990; see also next section). The Mexican
hat function was used in the previous canopy example.

The wavelet variance is a function derived from the wavelet transform to facilitate the
identification of dominant scale(s) (e.g., patch sizes) among two or more data sets. It is
defined as
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Figure 4. Transect of canopy brightness taken from a Douglas fir old growth stand using
low-altitude videography (1 m resolution). The peaks and troughs in the data correspond to
bright, illuminated tree crowns alternating with dark gaps in the canopy, respectively.
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Figure 5. The wavelet transform calculated for the transect in Figure 4. The x-axis
corresponds to location along the transect (meters). The y-axis indicates the scale of pattern.
High (bright) values of the transform correspond to peaks, while low (dark) values correspond
to troughs in the data. Note there are two dominant scales of pattern: a fine scale nested
within the larger domains.
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•
w(a) = co2(a,,x)dx

	 (2)

The wavelet variance was calculated for the transect in Figure 5 and for four other transects
taken from four forest canopies at distinct stages of development: young, mature, mature-old
growth mixture, and a young-mature mixture. The peak and amplitude of the wavelet
variance for each transect distinguish the canopy texture of each stand (Figure 6).

In terms of signal processing, the wavelet variance provides a measure of the average
energy contributed by each scale (or frequency) to the overall signal. Although both Fourier
power spectra and wavelet variances generally appear to provide similar information
(Bradshaw 1991), in many cases the wavelet variance has the advantage of being used in
concert with the hierarchical information provided by the wavelet transform:

HAAR WAVELET

Figure 6. The wavelet variance calculated for canopy data as in Figure 4 for five forest
age-class stands: young, mature, old growth, mature-old growth mixture, and young-mature
mixture. The peak indicates the scale at which the pattern is dominated. The amplitude is
proportional to the contrast in the data signal.
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DISTANCE ALONG TRANSECT

Figure 7. Wavelet transform showing changes in the intensity of the variance in krill
abundance with scale and distance traveled along acoustic transect. The relative change in
intensity occurred from white (high variance) to black (low variance).

The wavelet transform and the wavelet variance are performed using univariate data.
A third function, the wavelet cross-covariance, was derived from the wavelet transform to
quantify the spatial (or temporal) correlation between two variables as a function of scale and
lag (Bradshaw 1991). The lag is defined as the absolute distance between two points. The
wavelet cross-covariance function is obtained by first calculating the wavelet transform for
each variable, followed by the calculation of the cross-covariance function of the transformed
data at each scale. The scale(s) at which the maximum cross-covariance occurs indicates the
patch size at which the two variables are correlated. The lag at which the maximum
cross-covariance occurs provides a measure of how closely coupled the two variables are in
space. For example, a maximum wavelet cross-covariance at 10 m zero lag between variables
A and B indicates that the two variables are coupled in space in 10 m patches. Conversely,
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a lack of correlation or a maximum cross-covariance at a non-zero lag at a given scale
suggests that the two variables are poorly or less closely coupled. Thus, the wavelet
cross-covariance function may be used to infer dominant scales of interaction. (An example
is given in Deutschman et al., this volume).

Examples from Biological Oceanography. We reanalyzed the krill data presented
earlier (section on spectral analysis) using the Haar transform. Wavelet transforms were
calculated for four one-dimensional data sets, at 10, 15, 20, and 25 m distance from the sonar
transducer. The acoustical data were integrated over a 1.5 m distance, with structure
occurring at smaller scales averaged out. Due to sampling and transect limitations, the
maximum scale resolved was 24 m. All four transects showed dominance of patches at 56
m, as determined by the wavelet variance function, and in agreement with the results of the
spectral analysis. However, there was evidence, for the 25 m data set, that patches appear
to occur at two scales, 56 m and 222 m. This may be interpreted as suggesting that at least
two different mechanisms are operating to create structure at two different scales. For
example, at the smaller scales, krill behavior, such as swarming, may dominate and control
the observed spatial structure. At the larger scales, other physical or biological processes may
dominate patch formation. Given the present data constraint this is only speculative, but it
illustrates the uses of these methods.

The two-dimensional representation of the data (distance on horizontal axis and scale
on the vertical axis) provide information on the intensity of the variance with scale and
position along the transect (Figure 7). The wavelet transform thus suggests higher-order
structure. For a clear picture of higher-order structure (224 m) we require longer acoustic
transects (i.e., larger data sets). With the present data constraint, it is difficult to determine
whether a nested structure is present.

Multivariate Methods

We turn now to the multivariate systems in which the data are abundances of categories
(cover-types, taxa, or life-forms), with an explicit spatial reference for each subsample.
Commonly, subsamples are arranged in a grid and the data can be represented as a
three-dimensional matrix in which the first two dimensions are spatial coordinates and the
third one, the array of categories. There are two fundamental ways to look at the variation
of pattern.

How the statistical descriptors of the landscape vary. This has been popular among
ecologists since Greig-Smith (1957), although several drawbacks to this particular method
have been pointed out (Upton and Fingleton 1985). With the indices described below, these
drawbacks can be avoided (i) if the basic subsamples used for computing are randomly located
in the grid, (ii) if the maximum sample size to analyze is restricted to be less than half the
whole area side, and (iii) if boundary effects are avoided. Plots of averages and/or variances,
since they are equally important, calculated for each cell, versus cell size are made.
However, these methods do not consider spatial scales explicitly.

How indices vary between two grid cells separated by a distance d as this distance
increases. The general procedure consists of randomly placing a dipole of length d n times
on the grid, recording values at both extremes, and computing one of the following indices.
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The dipole length, d, is increased (to a maximum of 1/2 the minimum side of the grid to
avoid boundary effects) and the index re-computed. Distances can be the ordinary euclidean
or be arbitrarily defined.

The contingency table for length d is built with the co-occurrence frequencies of the
species recorded at the cells intersected by the dipole's extremes. The same statistics
described above can be applied to these contingency tables.

In the case of inultivariate dissimilarity, the procedure is similar to the semivariogram,
but a multivariate dissimilarity is substituted for the squared difference (Mackas 1984).

The Mantel index is defined as

E Pci.J * 11)
	

(3)

where Xi j is the dissimilarity between cells i and j, and Yi j is the corresponding distance.
It tests the independence of both matrices. Well-documented ecological applications can be
found in Upton and Fingleton (1985), Sokal (1986), Oden and Sokal (1986), and Legendre
and Fortin (1989). The Mantel index can be presented in spectral form ("Mantel
correlogram" in Legendre and Fortin 1989) to explore the relationship between dissimilarity
and distance.

Empirical Orthogonal Functions

Empirical orthogonal functions (EOF) are also referred to as PCA (Principal Component
Analysis) or Proper Orthogonal Decomposition. PCA is a tool extensively used for analysis
of the spatial/temporal variability of physical fields (Preisendorfer 1988) such as winds, and
of sea surface temperature (SST). An attempt to correlate physical fields (SST) and biological
patchiness (pigment concentrations) will be the basis for the example presented herein. The
technique is used to look at the aggregation of the variance to explain the spatial (temporal)
structure. The data need only consist of real numbers.

The analysis reduces the dimensionality of the data, grouping the variance of the data
to examine characteristics of induced or autonomous variables in the description of patchiness.
A review by Matta and Marshall (1984) expands on the advantages of using PCA to examine
phytoplankton variation.

Examples from biological oceanography: Sea surface temperature and water color
(satellite). Oceanographic features such as warm core rings (WCR) are defined as distinctive
patches for the purposes of this case study. WCR are clockwise rotating features, with
Sargasso Sea water in the center, which have broken away from the meandering Gulf Stream.

Color data are from the Coastal Zone Color Scanner (CZCS), and sea surface
temperature (SST) are from the Advanced Very High Resolution Radiometer (AVHRR). A
total of 13 (single) ocean color images and 13 (single) matching SST images,' irregularly
spaced in time but matching pairs within 24 hours, were used for the EOF analysis. These
were processed using the Miami DSP image processing system for the VAX. NASA's
SEAPAK-PC package and MATLAB were used for data extraction and manipulation.

'The CZCS sensor is described by Hovis et al. (1980). Pigment concentrations are estimated
following details given by Gordon et al. (1980) and Gordon and Morel (1983).
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The images covered the period from March 31 to June 9, 1982. The area of interest,
the Mid-Atlantic Bight, includes the shelf and slope between 35° and 42° North. The WCR
under study was formed early in 1982 (Celone and Price 1983). The ring measured about 200
km in diameter (Figure 8).

Data were extracted from the images in a 100 x 100 pixel array, from 4 km resolution
data, whose center changed as the WCR moved in a southwesterly direction. The
two-dimensional data sets lend themselves to a Principal Component Analysis (PCA). Due
to the small number of images, the 100 x 100 matrix was divided into a 3 x 4 matrix (12
bins). To assure full complement of positive eigenvalues for the covariance matrix, the

Figure 8. Satellite image of the Mid-Atlantic Bight (4 km resolution) for April 24, 1982.
Three warm core rings (WCR) are shown. The WCR under use in the EOF analysis is shown
in the center.
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number of bins must be less than the number of images (Jassby et al. 1990). Once the n x
p matrix was obtained (n = days, p = variable, mean temperature or pigment concentration
per box), the covariance was calculated (yielding a square matrix) and the eigenfunction
obtained from the covariance matrix. The mean is removed from all values to determine the
anomalies in pigment concentrations and temperature. No rotation of eigenvectors was carried
out.

The contour plot of the first eigenvector is shown in Figure 9, as an example of the
patterns observed in the satellite images. The standard deviation showed greater variability
in the outside of the rings.

Table 3 shows the total variance (as a percentage) explained by the PCs. About 90%
of the variability is explained by the first eigenvector in the pigment data. The first
eigenvector explains about 80 - 85% of the variance in the temperature field. To pull out
more modes, a larger data set is needed.

The most important point of the exercise is to demonstrate ways in which moving
spatial features can be tracked in the ocean. The technique reveals recognizable patterns
(anomalies) in both the SST and pigment fields. In addition, it allows for the inference of
mechanisms (e.g., advection) that may be responsible for the variability observed.
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Figure 9. Contour plot of first eigenvector for sea-surface temperature (SST) showing lows
in center and highs toward the bottom right-hand corner of the plot.
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Table 3. Percentage total variance explained by the first most important principal components
(PC) of temperature (SST) and pigment concentration (PIG) of a warm-core ring.

PC SST PIG
1 84.2 89.8
2 7.1 5.0
3 4.9 2.9
4 4.3 1.2

Fractal Geometry: Applications in Analysis and Description of Patch Patterns and Patch
Dynamics

Mandelbrot's concept of a fractal extends our usual ideas of classical geometry beyond those
of point, line, circle into the realm of the irregular, disjoint, and singular (Mandelbrot 1983)
and so provides us with a new way to understand and analyze spatial phenomena. Fractals
are shapes in which an identical motif repeats itself on an ever-diminishing scale. A fractal
is a non-integer dimension.

For ecological applications, Krummel et al. (1987) used fractal models to examine how
patch boundary varies with patch size. The relationship is applied to landscape patches by the
equality between area and perimeter length,

A = BLD

where A is patch area, L is the patch perimeter, B is a constant, and D is the fractal
dimension. By using data for patch area and patch perimeter, and relationships

logA = logB + DlogL

we can estimate the fractal dimension D.
The fractal characteristics over a landscape may be important measures in ecological

diversity, stability, and function. Many recent studies have included measures of the fractal
geometry of landscapes and patch patterns (Burrough 1981, 1983; Krummel et al. 1987,
Gardner et al. 1987, Milne 1988, O'Neill et al. 1988, DeCola 1989, Wiens and Milne 1989,
Rex and Malanson 1990, Williamson and Lawton 1991).

Recently, Milne (1990) and Sugihara and May (1990) reviewed fractal applications in
ecological research and landscape. Here, we shall select some interesting aspects associated
with spatial patterns and patch dynamics and introduce them as follows.

Patch hierarchical scaling. Different observational scales capture different aspects of
structure, and these transitions are signaled by shifts in apparent fractal dimension of the
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object. This suggests an interesting application of fractals as a method for distinguishing
hierarchical size scales of patches in nature; for example, to determine boundaries between
hierarchical levels, or the scaling rules for extrapolation within each level.

Bradbury et al. (1984) examined the possibility of hierarchical scaling in an Australian
coral reef. They used the dividers method (Mandelbrot 1983) in transects across the reef to
determine whether D depends on the range of length scales. They found that three ranges of
scale correspond nicely with the scales of three major reef structures: 1 - 10 cm corresponds
to the size of anatomical features within individual coral colonies; 20 - 200 cm corresponds
to the size range of whole adult living colonies; and 5 - 10 m is the size range of major
geomorphological structures. This showed that the shifts in D at different spatial scales
appear to signal where the boundaries occur in the hierarchical organization of reefs.

Fractal spatial patterns and modified Brownian dynamics (dfffitsion). Hastings et al.
(1982) and Mandelbrot (1983) have discussed how fractal exponents may be incorporated into
diffusion processes, as a scaling factor for normalizing increments in space and time. They
find that D may be used as an index of succession in circumstances where simple
patch-extinction models are reasonable. A recent study has showed that many of nature's
seemingly patchy shapes can be effectively characterized and modeled as random fractals
based upon generalizations of fractional Brownian motion (Voss 1988).

DISCUSSION

It is worthwhile to recap the concepts of Kotliar and Wiens (1990) on the scales of patchiness.
Recognition of spatial pattern is dependent on the scale of observation as well as on the scales
of the processes under study. It is the coupling of pattern and process (i.e., patch dynamics)
at different scales, be it autonomous or induced, that leads to the subjectivity involved with
describing patchiness. Heterogeneity is recognized not only in terms of the processes
affecting the variability of patches, but also in the changes that occur due to this variability.
The description and analysis of patchiness is thus limited by the techniques for observation,
sampling, and analysis. The problem is to derive methods for statistically recognizing
spatio-temporal pattern. The examples used in this chapter are representative of the
techniques available. The techniques allow for inferences regarding interactions between the
physical and biological phenomena creating pattern at various scales. The causes and
mechanisms of patch formation are discussed by Deutschman et al. (this volume) and
demonstrate the complexity of these interactions.

In view of the above discussion, we might conclude that simple comparisons between
terrestrial and marine systems are often artificial. Differences in scale are inherent properties
of the systems and must be considered. Better comparisons of techniques across scales and
ecosystems are needed. This perspective seems appropriate when we realize that all terrestrial
and marine ecosystems are tightly coupled and our ecological perspective is expanding to an
all-inclusive global outlook.
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