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ABSTRACT

We are conducting a study to determine the flux of carbon (C) from forest
land due to logging over the past twenty years in the Pacific Northwest,
USA. Within the context of that study we are testing our methods over a
1.2 Mha area in the central Oregon Cascade Range. The methods include
remote sensing of forest age, detection of changes in forest age, simulation
of mean monthly temperature and precipitation, simulation of carbon
storage in forest stands, and spatial extrapolation to create C storage maps.
This paper describes our experiences to date..

1.0 INTRODUCTION

Global warming, as a result of increasing CO2 and other greenhouse gases in the
atmosphere, has been hypothesized for many years. The precise role of land use in this
scenario, though widely recognized as important, remains largely unknown. One
compelling question is "How will the balance of carbon (C) in the terrestrial ecosystem
change in response to a variety of land use practices?" Here, we describe a study in
which technology is being developed to help narrow this uncertainty for a major
terrestrial C pool, the temperate forests of the Pacific Northwest (PNW) region of the
United States. Our focus is on the portion of the PNW region that consists of western
Washington and Oregon, including the eastern slopes of the Cascade Mountains

In our study we are further developing a forest-stand-level C storage model that responds
to logging, a dominant land use in the region. The model is called Disturbed Forest
Carbon (DFC). By linking DFC within a GIS to satellite imagery and climate simulation
models, we extrapolate the model to a regional scale. Our methods permit the
estimation of C currently stored in the forests of the PNW. The archive of LANDSAT
Multispectral Scanner (MSS) and Thematic Mapper (TM) images provides a twenty year
historical perspective of land use changes in the region. With these data we are
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assessing the recent historical impacts of regional land use on forest C stores, and thus
net CO2 flux to the atmosphere.

An earlier paper (Cohen et al., 1992) described the overall conceptual framework for
this research. In another paper we discuss the challenges for remote sensing within this
project (Cohen et al, 1993). Here, we will focus on an initial test of our methods,
concentrating on an area of approximately 1.2 Mha in the central Oregon Cascade
Range. No results are given here; they are forthcoming.

2.0 METHODS

Our methods for mapping forest C and determining C flux require several different
steps: including 1) mapping of forest age; 2) mapping changes in forest age through time;
3) mapping, via simulation modeling and the meteorological record, mean monthly
temperature and precipitation; 4) simulation of C storage using the ONSITE module of
DFC; 5) spatial extrapolation to create C storage maps; 6) using the OFFSITE module
of DFC to track harvested C through the forest products sector.

2.1 MAPPING FOREST AGE

Our approach for mapping forest age involves a combination of unsupervised
classification and regression analysis. The classification provides a 95% accuracy
(derived from a combination of ground and airphoto sampling) on the following classes:
1) water, 2) high alpine snow and ice, 3) open, nonvegetated land (<30% vegetation
cover), 4) partially vegetated land (30-85% cover), 5) fully vegetated mixed
deciduous/coniferous forest (>85% cover), and 6) coniferous forest (>85% cover). For
now we make the assumption that class 3 is five years of age, class 4 is ten years of age,
and class 5 is twenty years of age. These estimates are based on empirical observations.
Within the conifer forest class (class 6), the stand age regression model developed by
Cohen and Spies (1992) was applied. The regression model was derived from the
relationships between the TM Tasselled Cap wetness index and ground survey data from
a variety of forest stands. The model has a coefficient of determination of 0.81. Ground
field checking revealed that accuracy for the map of age classes derived from this model
is 75% for three classes: <80 years old, 80-200 years old, and >200 years old. For the
combined land cover and age class map the overall accuracy is 83%.

Some of the error in the age model results from the fact that we selected only typical
examples of forest conditions for model development. Thus, some atypical stands visited
for accuracy assessment were outliers. These outliers were generally younger forest
stands that appear older in the imagery because of an increased rate of structural
development due to site conditions. We are currently evaluating means by which to
obtain better estimates for age of these atypical stands.



2.2 CHANGE DETECTION

Change detection, when done in a spatially explicit manner involves spatial overlay of
two or more images from different dates. Three types of change detection algorithms
are commonly used: 1) difference, 2) ratio, and 3) principal component analysis (PCA).
The difference and ratio algorithms require simply subtracting one image from another,
or dividing one image by the other, respectively. These two algorithms are generally
limited to comparison of two images, and should give similar results, except for how the
resultant image is scaled. The PCA algorithm can be applied to any number of images,
with each PC axis generally representing change between two distinct time periods.
Other algorithms have been applied, but to date, only in isolated situations.

We have just begun to experiment with change detection using two TM images, and have
some preliminary results to report. Our efforts to date involve the use of the Tasseled
Cap wetness images from 1988 and 1991 scenes for the study area. To identify areas
logged between the two dates, the 1991 wetness image was subtracted from the 1988
image. Different degrees of change were represented by different digital values in the
change image, with harvested areas having the lowest values. After determining the
threshold value representing change due to logging, we then smoothed the image to
eliminate small groups of pixels that were falsely identified as logged due to a small
amount of spatial misregistration between the two wetness images. This then became a
"harvest" mask used with the derived C storage map, described later.

2.3 CLIMATE SIMULATION

Mean monthly precipitation and temperature are required to run the OFFSITE module
of DFC. We had planned to use output from the PRISM model (Daly et al., 1993) to
produce these data layers. Currently, PRISM provides only precipitation, with a grid cell
size of roughly 6 km by 9 km for our study area. We have evaluated this layer and it
appears to provide reliable information. We are now evaluating other models to obtain
the desired spatially explicit temperature information. Until we obtain that data layer we
are using a measure of forest productivity (Isaac, 1949) to simulate C storage in a forest
stand. The measure of productivity used is site index, which has six classes within the
study area. One of these classes is non-forest.

2.4 CARBON STORAGE STIMULATIONS

Using the ONSITE module of DFC we simulated forest stand C stores in living
vegetation, woody detritus, and the forest floor over succession for five forest productivity
classes within the study area (Isaac, 1949). The result was a set of five lookup tables
(LUTs), one for each productivity class. For each of the five classes, the year that
maximum bole production was reached and the maximum rate of bole production was
adjusted to match the bole yields presented by McArdle and Meyer's (1930) Table 2. Ac
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McArdle and Meyer presented their data in cubic feet per acre, we first transformed
these values to Mg C per hectare by converting to cubic meters per hectare by
multiplying by 0.069, assuming a bole density of 0.45 Mg per cubic meter and that a bole
was 90 % wood and 10 % bark (bark was not included in McArdle and Meyer's
volumes), and a carbon content of 50 %. Calibration to these transformed data
indicated that bole production rates reached a maximum at 45 years and that the rate of
peak production closely matched the values presented by McArdle and Meyer's Table 10
for all but the lowest production class. From the highest to the lowest productivity class
the maximum rates of bole production used were 5.0, 4.4, 3.6, 2.4, and 1.8 Mg C per ha
per year, respectively.

Production of other woody parts of trees was assumed to parallel bole production but at
lower rates based upon their ratio to bole mass. We assumed that the branch/bole ratio
was 0.08 and that the coarse root/bole ratio was 0.21 based upon Grier and Logan
(1977). Mortality rates of all woody tree parts was assumed to be 0.6 % per year.

Production of foliage and fine roots was estimated from turnover rate and maximum
biomass. Maximum biomass of these two components was estimated to occur at 45
years, and the turnover rates for foliage and fine roots were kept constant at 20 % per
year and 50 % per year, respectively. We assumed that both foliage and fine root
maximum biomass increased linearly with site productivity.

Variation in coarse woody debris, fine woody debris, dead roots, and forest floor C stores
was assumed to be primarily controlled by rates of detrital production. This means that
higher site quality forests will produce more detritus and therefore store more detritus.
This pattern matches the overall regional pattern of detrital stores (Grier and Logan,
1977; Boone et al., 1988). Rates of decomposition for coarse woody debris, fine woody
debris, dead roots, and forest floor were assumed constant across the range of
productivity classes and set at 0.02, 0.03, 0.04, and 0.15 per year, respectively. While
temperature, moisture, and litter quality all influence the decay rates of these detrital
components, the way these variables change with site productivity is complex. In our
next iteration we plan to examine how these variables are spatially distributed within
each site productivity class to more accurately estimate decay rates.

Detrital inputs and losses also occurred when forests were harvested. For this analysis
we assumed that the harvest and site preparation parameters were constant regardless of
when and where a stand was harvested. This is, however, a gross simplification as
harvest utilization standards have dramatically changed with time (Harmon et al., 1990).
When a forest is harvested we assumed that 85 % of the boles (including bark) was
removed from the site. We also assumed that during site preparation that 75 % of the
fine woody debris and forest floor and 25 % of the coarse woody debris would be
converted to CO2 by fire.



Soil C was estimated using the Oregon STATSGO soil geographic data base (Soil
Conservation Service, 1991). The data base consists of 217 spatially explicit map units
for the state of Oregon, of which 18 are totally or partially contained in the study area.
Each map unit is sub-divided into as many as 21 components, and each component is
described by minimum and maximum values of several soil characteristics. The
minimum and maximum values of the following characteristics were averaged and used
to calculate mineral soil carbon content (Mg per ha) to a depth of 20 cm: organic matter
(OM) concentration (% of <2 mm by weight, converted to % carbon by multiplying by
0.58), bulk density (g of <2 mm per cm 3 of <2 mm), and rock content (% of total
weight, converted to % of total volume by assuming rock density of 2 g per cm3).
Mineral soil carbon content could not be determined to a depth greater than 20 cm
because organic matter data were generally limited to the surface mineral soil horizon.
The adequacy of this approach to estimate soil C over large regions is being tested by
comparing results with measurements made at 400 locations in western Oregon.

2.5 SPATIAL EXTRAPOLATION

The details of our spatial extrapolation methods are given in Cohen et al. (1992).
However, as mentioned earlier, because we did not have the desired temperature data
layer we used a map of forest productivity classes for the study area (Isaac, 1949) as a
proxy for the climate data layers. Thus, for each 25 m cell size of our study area (based
on geocoded TM data), we determined the productivity class from a digitized version of
the this map, and forest age from the age map of 1988. The productivity map indicated
which C LUT to go to, and the cell's age indicated where in the LUT to find the C
storage values for the different storage pools.

2.6 HARVESTED CARBON

The OFFSITE module of DFC uses a Markovian chain to predict amounts of various
forest products in the PNW, and ultimately the amount of CO 2 produced by the
decomposition or combustion of the products. Transition probabilities from the
harvested tree boles to the various products through manufacturing processes, reuse,
recycling, and finally to CO2 were obtained from a variety of sources. Some data came
from publications on efficiency of forest products manufacture, some from US Forest
Service statistical summaries of production, and when a published source was
unavailable, from expert opinion. The rates of decomposition were grouped into five
categories from immediate (e.g., combustion) to indefinite (burial in landfills) and half-
lives were assigned to each category for computation.

Once all of the probabilities have been set and the Markov matrix developed, any input
of wood volume can be used to calculate how much CO 2 is being produced yearly and
cumulatively by forest product manufacturing. Probabilities change with time, as a result



of changing efficiencies in manufacturing. This is accommodated by changing the values
in the matrix.

Using the harvest mask, which was overlaid onto the bole carbon storage map, we can
determine the amount of carbon harvested and thus sent through the forest carbon
sector. This amount is fed into the OFFSITE module's Markov matrix. Preliminary
estimates are that 50 % of the bole is transferred into long-term forest products. We
also assume that carbon in long-term forest products will be lost to the atmosphere at a
rate of 2 % per year (Harmon et al., 1990).

3.0 CONCLUSIONS

In this study we have tested many of our proposed methods (Cohen et al., 1992), and
have been successful at creating the needed maps of forest C stores. Some problems
were identified and ways around them determined. Our next step is to redo the analysis
on this test site, using a refined and more complete set of techniques, and to produce
actual results that can be assessed for their accuracy and meaning.
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