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ABSTRACT

Within the context of a study to model the effects of land use on carbon storage in the
Pacific Northwest region of the United States we are processing about 100 Landsat
images. The image processing challenges within the study are numerous. To determine
the utility of our proposed methods many of our them are being tested on a 1.2 Mha
area within the region. The major challenges include mapping of forest cover type and
seral stage, radiometric and geometric rectification, and change detection. In this paper
we present preliminary results.

1. Introduction

Satellite imagery has been available for over twenty years, and through it the Earth’s
human populations have caught glimpses of its splendor and beauty. A new sensitivity to
the severity of human impacts has ensued, and a discipline cailed Earth System Science
was born. With this has come an increasing empbhasis in research on the role of remote
sensing in helping to understand our planet. As a result, remote sensing scientists now
face the challenge of providing more accurate information derived from satellite and
other relevant forms of data over greater spatial scales than might be contained in a
single satellite image. Likewise, an intensified temporal focus requires coordinated use
of multiple image data sets.

Although methodology for use of multiple images has developed to where we now have
algorithms for amelioration of differential atmospheric, sun angle, and topographic
effects, and though we now have more precise geometric rectification procedures, there
are still numerous improvements to be made. Atmospheric models are imprecise, and
often, ancillary data needed for these models are lacking. Corrections for sun angle and
topographic effects are used, but often, these are not particularly relevant in light of the
interaction of these phenomena with the vertical structure of the Earth’s surface features
(e.g., vegetation). Geometric models have greatly improved, but even the best of these
leaves coregistered images somewhat askew of each other. Then, there are vegetation
phenological responses that must be either enhanced or suppressed, depending on needs.
Temporal analyses are not new, but while a number of so called "change detection”
algorithms exist, this is one aspect of remote sensing that has not developed in any
significant way.
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The problems of using multiple data sets aside, there is still the problem of accurately
deriving the desired biophysical, geophysical, or climatological information from the
satellite data. For example, we still are uncertain as to the mechanisms driving remote
sensing vegetation indices. Although there is abundant theory on this topic, the theory is
incomplete, and some important indices have hardly been considered. Thus, the majority
of information extraction algorithms put to use are correlative in nature. Though these
are certainly useful, a more mechanistic understanding of the interaction of radiation

with surface features, and how this interaction manifests itself in remotely sensed images,
should lead to more accurate derived information.
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Within the context of a current research project we are having to address these §
important concerns. That research involves the use of almost 100 Landsat MSS and TM t
images, in conjunction with ecosystem and climate simulation models, to evaluate the
effects of land use on carbon storage in the Pacific Northwest region of the United
States between the period of 1972 and 1992 (Cohen et al,, 1992). This paper
summarizes our experiences on that project to date in four general categories: 1)
mapping of forest seral stage, 2) radiometric rectification in space and time, 3) geometric
rectification in space and time, and 4) change detection. :

2, Mapping of Forest Seral Stage

We have thus far mapped land cover, and forest seral stage, on a 1.2 Mha area in the
Central Oregon Cascade Range. An area dominated by western hemlock/Douglas fir

forests. This area is serving as a pilot for further development and testing of our
methods to be used for the full project area.

Our approach involves a combination of unsupervised classification and regression
analysis. The classification provides a 95% accuracy (derived from a combination of
ground and airphoto sampling) on the following classes: 1) water, 2) high alpine snow
and ice, 3) open, nonvegetated land ( <30% vegetation cover), 4) partially vegetated land
(30-85% cover), S) fully vegetated mixed deciduous/coniferous forest (>85% cover), and
6) coniferous forest (>85% cover). Within the conifer forest class, the stand age
regression model developed by Cohen and Spies (1992) was applied. The regression
model was derived from the relationships between the TM Tasselled Cap wetness index
and ground survey data from a variety of forest stands. The model has a coefficient of
determination of 0.81. Ground field checking revealed that accuracy for the map of age
classes derived from this model is 75% for three classes: <80 years old, 80-200 years old,

and >200 years old. For the combined land cover and age class map the overall
accuracy is 83%.

Some of the error in the age model results from the fact that we selected only typical
examples of forest conditions for model development. Thus, some atypical stands visited
for accuracy assessment were outliers. These outliers were generally younger forest
stands that appear older in the imagery because of an increased rate of structural
development due to site conditions. We are currently evaluating means by which to
obtain better estimates for age of these atypical stands.
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3. Radiometric Rectification in Space and Time

Radiometric rectification is used here to refer to some sort of normalization applied to
image data to make multiple data sets more radiometrically compatible. Several options
are available, but we are first testing a method developed by Hall et al. (1991). This
method "matches" digital numbers of each band of a subject image to those of a
reference image. First, dark and bright radiometric control sets are selected from the
reference and subject images in Kauth-Thomas two-dimensional brightness-greenness
space. The control sets are selected interactively by viewing images and highlighting
potential control set pixels in the images. Then, raw band-to-band linear transformations
are developed from relationships between control sets of the subject and reference

images, and the resultant linear transformations are applied to rectify each band of the
subject image.

When we attempted to apply the Hall et al. (1991) methodology, we were immediately
confronted with an unexpected challenge. Our brightness-greenness histograms had a
considerably different shape than those illustrated in Hall et al. (1991). Whereas their
histograms had a distinctly triangular shape, our histograms has several "tails" making up
the brightness axis, or "leg" of an otherwise triangular shape. The dark end of the
brightness axis was close to what we expected, but the bright end of this axis contained
several bifurcations. This raised the issue of where to select control sets.

After experimenting with control set selection we found that the bifurcation which most
closely resembled the Hall et al. (1991) brightness axis did not provide good results for
our images. Rather we found that one or more bifurcations below the brightness axis
(i.e., into negative greenness) gave better results. Because the bifurcation which worked
best was variable, we could not consistently get the desired result simply by picking what
appeared to be the best brightness control set. Thus, we found it necessary to select
three to five candidate bright control sets and evaluate which worked best. Furthermore,
we found that which control set worked best was band dependent. In the final analysis,
we decided to use the control set which worked best for a given band to rectify that
band. This was determined from a combination of visual assessment and comparison of
digital numbers from test sites of ground areas which overlapped in the subject and
reference image.

The correction is imperfect, but does provide significantly improved radiometric
matching among images. This now permits us to spatially mosaic images together, and
to do temporal analyses on spatially coincident images, without having to overly concern
ourselves about differing radiometric properties.

4. Geometric Rectification in Space and Time
Methods for accomplishing geometric rectification are fairly straight-forward, and are
included in most image processing software programs. In question however, are (1) how

many ground control points (GCPs) are required per unit ground area in complex terrain
to provide an acceptable root mean square (rms) error?, and (2) what effect does the
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reduction in humber of GCPs have on image to image registration, even if the rms error
is unaffected by this reduction? We conducted a simple test to evaiuate these problems.

Using a 1988 TM image of our 1.2 Mha study area as the reference image, we selected
36 GCPs well distributed in space. We then located the same GCPs in 1991 TM, 1976
MSS, and 1984 MSS subject images of the same area. Using a nearest neighbor
resampling algorithm to rectify the subject images, the rms for each subject image was
obtained for both first and second order polynomial transformations. We then reduced
the number of well-distributed GCPs to 21, 11, and S for first order transformations, and
to 21, 11, and 6 for second order transformations.

To aid in our analysis, we digitized 10 spatially well-distributed polygons around features
readily identifiable in the reference image. These polygons were then displayed as an
overlay on the rectified subject images to determine the euclidean distance shift between
the visual location of the digitized features and the actual polygon locations.

Results indicate that the lowest rms is obtained with the fewest number of GCPs. This is
understandable for the second order polynomials, where the rms was equal to zero, given
that six GCPs is the minimum number permitted and the minimum number will
mathematically yield a zero rms. The largest rms was in almost all cases associated with
the largest number of GCPs. In general however, there was little difference between rms
values for the transformations using 21 and 36 GCPs. In almost all cases the rms was
lower for the second order than the first order transformations.

Polygons were almost always more accurately located for both first and second order
transformations when larger numbers of control points were used. For the TM subject

image the shift was less for the first order transformation, regardless of the number of
GCPs. The opposite was true for the MSS data.

In summary, the rms was less than one TM pixel regardless of the mumber of GCPs or
order of transformation. Taken on this basis alone, any number of GCPs would appear
to give excellent results, and may cause one to ignore the fact that there may still be a
significant misregistration among images. Perhaps the most meaningful use of rms
values is to eliminate "bad” GCPs from a set, not to indicate in anmy real way how much
actual error in image matching has occurred as a result of georeferencing. The actual
shift in polygon locations varied between zero and over five pixels. The mean shift for
the ten polygons using any given combination of number of GCPs and order of
transformation was between zero and 2.29. Thus, any given ground scene area in this
scenario was shifted up to at least five pixels in the subject image relative to its location
in the reference image. This can cause serious errors in detection of change for

temporal image sets, and can cause false boundaries along seams in a spatially
mosaicked image.

52 / SPIE Vol. 1941 Ground Sensing (1993)




5. Change Detection

Change detection, when done in a spatially explicit manner involves spatial overlay of
two or more images from different dates. Three types of change detection algorithms
are commonly used: 1) difference, 2) ratio, and 3) principal component analysis (PCA).
The difference and ratio algorithms require simply subtracting one image from another,
or dividing one image by the other, respectively. These two algorithms are generally
limited to comparison of two images, and should give similar results except for how the
resultant image is scaled. The PCA algorithm can be applied to any number of images,
with each PC axis generally representing change between two distinct time periods.
Other algorithms have been applied, but to date, only in isolated situations.

We have not yet begun to experiment with change detection, so we have nothing to
report here. We are aware however, that spatial misregistration will cause erroneous
results around "sharp" edges such as clearcut and forest boundaries. To some extent we
think we will be able to filter these narrow boundaries out of the change image.

6. Acknowledgements

This research was supported in part by the Ecosystems and Land-Atmosphere ,
Interactions Program of the Biogeochemistry and Geophysics Branch at NASA, and by
the HJ Andrews Long Term Ecological Research Program.

7. References

Cohen, W.B. and T.A. Spies. 1992. Estimating structural attributes of Douglas-
fir/western hemlock forest stands from LANDSAT and SPOT imagery, Remote
Sensing of Environment, 41:1-17.

Cohen, W.B., D.O. Wallin, M.E. Harmon, P. Sollins, C. Daly, and W.K. Ferrell. 1992.
Modeling the effect of land use on carbon storage in the forests of the Pacific

Northwest, International Geosciences and Remote Sensing Symposium, 26-29 May,
1992, Houston, TX, Vol. 2, pp. 1023-1026.

Hall, F.G., D.E. Strebel, J.E. Nickeson, and S.J. Goetz. 1991. Radiometric rectification:
toward a common radiometric response among multidate, multisensor images,
Remote Sens. Environ. 35:11-27.

SPIE Vol. 1941 Ground Sensing (1993} / 53




The papers appearing in this book comprise the proceedings of the meeting mentioned on
the cover and title page. They reflect the authors’ opinions and are published as presented
and without change, in the interests of timely dissemination. Their inclusion in this
publication does not necessarily constitute endorsement by the editors or by SPIE.

Please use the following format to cite material from this book:

Author(s), "Title of paper,” in Ground Sensing, Hatem N. Nasr, Editor, Proc. SPIE 1941,
page numbers (1993),

Library of Congress Catalog Card No. 93-84060
ISBN 0-8194-1177-9 -

Published by

SPIE—The International Society for Optical Engineering
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone 206/676-3290 (Pacific Time) ® Fax 206/647-1445

Copyright ©1993, The Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal
use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is
authorized by SPIE subjectto payment of copying fees. The Transactional Reporting Service
base fee for this volume is $6.00 per article (or portion thereof), which should be paid
directly to the Copyright Clearance Center (CCC), 27 Congress Street, Salem, MA 01970.
Other copying for republication, resale, advertising or promotion, or any form of systematic
or muitiple reproduction of any material in this book is prohibited except with permission
in writing from the publisher. The CCC fee code is 0-8194-1177-9/93/$6.00.

Printed in the United States of America.




PROCEEDINGS

SPIE——The International Society for Optical Engineering

Ground Sensing

Hatem N. Nasr
Chair/Editor

14 April 1993
Orlando, Florida

Sponsored and Published by )
SPIE—The International Society for Optical Engineering

Volume 1941

SPIE (The Society of Photo-Optical Instrumentation Engineers) is a ‘nonprofit society dedicated to the
advancement of optical and optoelectronic applied science and technology.




	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

