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Introduction 

The Pacific Northwest (PNW) region of the United States has received 
much attention in the past several years concerning the amount and 
distribution of late-successional forest conditions. This concern has 
prompted a number of studies to define, characterize, and map forest cover 
and structural attributes in the region. The mapping efforts have had at 
their core the use of satellite and other remotely sensed data (e.g., The 
Wilderness Society 1991, Congalton et al. 1993) and have proceeded with 
little or no scientific research component. Rather, the emphasis has been 
on map creation, using primarily established image analysis and GIS tech- 
niques. Although such techniques are useful and can provide reasonable 
and often acceptable results, research can help bring about a better under- 
standing of the relationships between image characteristics and forest 
attributes. In turn, improved methods and models, and therefore more 
accurate map representations, can result. Equally important, research can 
help us better recognize the limitations of current remotely sensed data 
and of algorithms designed to extract the needed forest information. The 
latter is extremely important because, increasingly, maps derived from 
remotely sensed data are being commissioned by policymakers and others 
who have little knowledge of the technology. 

Cohen and Spies (1990) are addressing the need for remote sensing 
research in the PNW region, and this chapter is a summary of two specific 
and focused research projects to that end. For further details on this 
research, see Cohen et al. (1990) and Cohen and Spies (1992). 

Our first project involved the use of a geostatistical technique known as
the semivariogram (Cohen et al. 1990). Semivariograms enabled explora- 
tion of the image spatial domain, which, depending on image spatial reso- 
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lution, may contain substantial amounts of information with respect to
forest structure. This is because forest structure is largely a spatial phenom- 
enon. For the second research effort, the spatial domain was further ex- 
plored by evaluating relationships between image texture and structural 
attributes (Cohen and Spies 1992). Most of the research in remote sensing 
of forested ecosystems has focused on the image spectral domain; that is. 
the analysis of multispectral images using statistics-based decision rules for 
determining the identity, with respect to forest stand characteristics of 
interest, of each pixel in the images. This holds significant promise; there- 
fore, we incorporated analyses of image spectral properties as a part of this 
second study. 

The primary emphasis in these research projects, thus far, has been on 
Douglas-fir (Pseudotsuga menziesii forests of the western hemlock (Tsuga 
heterophylla) zone described by Franklin and Dymess (1988), which domi- 
nates the PNW region. As a result of past fires, steeply dissected terrain, 
and intensive forest-management practices, the western hemlock zone has 
a complex pattern of stand structural conditions. Initially, the focus was 
on stands having a closed canopy (those in which at least 85 percent of 
horizontal space is occupied by trees), a condition that commonly occurs 
within the first 25 years or so after a major disturbance. In closed-canopy 
conifer forests of the region, structural conditions can be characterized on 
a continuum from simple in young, even-aged stands to complex in old- 
growth stands. Structural differences among these successional stages are 
described by Spies and Franklin (1988). Generally, simply structured 
stands have a single canopy layer of similar-sized small trees with few 
canopy gaps, high tree density, and low basal area. Complex structured 
stands commonly have multiple canopy layers with numerous gaps and a 
variety of tree sizes, and relatively low tree density and high basal area in 
the upper canopy layers. 

Image Spatial Domain 

Implicit in an analysis of image spatial properties is a recognition that 
image pixels exist within a neighborhood of other pixels, and that the 
spatial variability of the spectral properties of images contains information 
about the spatial characteristics of the ground scene. As forest structure is 
largely a set of spatial characteristics, we hypothesized that the spatial 
domain of images should contain valuable information about forest struc- 
ture. Two major questions were: (1) “What structural attributes can be 
reliably estimated by spatial algorithms?“ and (2) “What is the effect of 
image spatial resolution on attribute estimation?” 
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Image Semivariograms 
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A semivariogram is a graphical representation of the spatial variability in 
a given set of data. The semivariogram, or y(h), is calculated as 

1 n-h 

where h is the lag (or distance) over which y (semivariance) is measured, n 
is the number of observations used in the estimate of y(h), and Z is the 
value of the variable of interest at spatial position 3 (Webster 1985, 
Joumel and Huij bregts 1978). The quantity Z( q + h )  is the variable value 
at distance h from 3. Thus for spectral data, y(h) estimates the variability 
of radiance Z as a function of spatial separation. 

Typically, the shape of a semivariogram is such that y increases with h 
until it reaches a maximum, or sill (Figure 7.1). The lag at which the sill is 
reached is called the range. The range and the sill are the two most 
important parameters of the semivariogram used to describe the data. The 
range can be used as a measure of spatial dependency, or homogeneity,. 
whereas the sill reflects the amount of spatial variability. For a more in- 
depth discussion of semivariograms and related theory see Matheron 
(1971), Clark (1979), Journel (1989), Oliver et al. (1989a and 1989b), 
and Webster and Oliver (1990). For examples of semivariogram usage in 
remote sensing other than that presented here see Yoder et al. (1987), 
Atkinson and Danson (1988), Curran (1988), Jupp et al. (1988a,b), 
Woodcock et al. (1988a,b), Curran and Dungan (1989), Ramstein and 
Raffy (1989), Wald (1989), Webster et al. (1989), de Miranda and Mac- 
Donald (1990), Rubin (1990), Atkinson et al. (1990), and Townshend et 
al. (1992). 

The primary objective for our use of semivariograms was to evaluate 
their potential utility for distinguishing among forest stands having 
different canopy structures (Cohen et al. 1990). Digitized aerial true-color 
videography, at a nominal 1-meter pixel size, was used. As we also wanted 
to examine the potential utility of semivariograms for use with SPOT 
HRV panchromatic and Landsat TM data, analyses were repeated after 
the video data were spatially degraded to 10 and 30 meters. 

Images of five forest stands were selected for study. The only quantified 
forest stand attribute was tree crown size. The stands were selected pri- 
marily on a qualitative basis so that they had different canopy structures, 
labeled as young, mature, old-growth, young-mix, and mature-mix. The 
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Figure 7.1 Typical shape of semivariograms with ranges and sills shown 

young and mature stands had relatively simple canopy structures and the 
old-growth and mixed stands had complex structures. Semivariograms 
were calculated for each stand using the digital numbers (DN) in the red 
band of the images. The analysis was undertaken in two separate ways: (1) 
using a transect method that evaluates single transects of pixel DN, and 
(2) a matrix method that uses DN of the full two-dimensional pixel 
matrices in the images. 

We concluded from this study that semivariograms of image data 
should be a useful means of evaluating canopy structure in the Douglas-fir 
forests of the PNM region. The matrix semivariogram should provide 
fairly accurate estimates of stand structure parameters, but will not readily 
permit the evaluation of patterns in stand structure. Because transect 
semivariograms exhibit periodicity, they may permit the detection of pat- 
terns in forest stands. However, as transects represent only a sample of 
data values, transect semivariograms will not depict stand structure pa- 
rameters as accurately as matrix semivariograms. 

It was clear from this study that the utility of semivariograms for eval- 
uating within-stand conifer canopy structure from remotely sensed images 
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is greatly influenced by image spatial resolution. At a spatial resolution of 
1 meter, radiant energy sensed from all tree crowns, excluding those of 
saplings, will be expressed in the DN of several pixels. Because of this, the 
range of the 1-meter matrix semivariogram is a valuable measure of tree 
crown size in a conifer forest stand. At a 10-meter pixel size (e.g., SPOT 
HRV panchromatic data) the range of the matrix semivariogram is less 
useful, yielding only a coarse estimate of crown size. As few trees have 
crowns that are 30 meters in diameter or greater, the range of the semi- 
variograms using Landsat TM data should not be useful for estimating tree 
crown sizes. 

Sills of the 1-meter matrix semivariograms depict the presence of 
canopy layering and gaps in forest stands. Because the sill responds to both 
percent canopy cover and canopy layering, however, their use may not 
always facilitate distinguishing mixed-stand structures from old-growth 
structures. Likewise, these categories of forest structure are not always 
clearly distinguishable on the ground. Because the sills are reduced with 
increasing units of regularization, like the range, the sills are less informa- 
tive as image pixel size increases. For the 30-meter data the sills were very 
similar in magnitude, again indicating a limitation for the potential 
usefulness of semivariograms of Landsat TM data for stand structure 
analysis. 

To apply the semivariogram technique to image data for within-stand 
structure analysis, separate semivariograms must be calculated for each 
stand. This requires either the use of image segmentation algorithms (e.g., 
Woodcock and Harward 1992) or digitization of photointerpreted poly- 
gons. Image segmentation is a critical yet largely underdeveloped area of 
remote sensing research. Until a number of reliable image segmentation 
algorithms are developed, the use of semivariograms may be impractical 
on a full HRV scene that may contain hundreds, or perhaps thousands, of 
individual stands. If this procedure were to be executed, however, the sills 
could be used as an index of stand structural complexity. An alternative 
and maybe more practical approach would be to create a new data layer 
from the existing image data (e.g., HRV or merged HRV and TM) that 
largely distinguishes each stand’s structural complexity from that of the 
other stands. This data layer could be used in the multispectral image 
processing context. Some measure of local variance for an image contain- 
ing numerous stands would be helpful. Several measures of local variance, 
or texture, are possible (e.g., Woodcock and Strahler, 1987; Rubin, 1990; 
Wang and He, 1990), and adapting or developing one that performs well 
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was a focus of our second research project. 
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Image Texture 

A wide variety of texture algorithms have been used to process digital 
imagery (Irons and Petersen 1981, Gool et al. 1985, and Mather 1987). 
From these we chose the standard deviation and absolute difference al- 
gorithms described by Rubin (1990). Using these algorithms, texture im- 
ages were created from an unenhanced HRV 10-meter image, and from 
30-meter TM data (Cohen and Spies 1992). Initial evaluation indicated 
that the absolute difference algorithm provided a greater dynamic range of 
texture information and therefore had potentially more discriminating 
power. 

From the absolute difference images, the boundaries of more than 40 
forest stands representing a variety of conifer closed-canopy conditions 
were digitized. Then, those pixels corresponding to the ground location of 
each stand were extracted from the images. Ground data were collected by 
Spies and Franklin (1991) and used to calculate a number of attribute 
values for those stands relating to mean tree size, tree size variability, tree 
density and basal area, two newly developed canopy structural indices, 
and stand age. One new structure index was the Canopy Height Diversity 
index (CHD), which is based on theoretical concepts that describe the 
relative volume of “ecological space” occupied by trees in a stand. 
Development of the other index, the Structural Complexity Index (SCI), 
was inspired by the fact that most of the stand attributes evaluated are 
highly correlated in a given forest stand. Thus, the SCI is a means with 
which to capture in a single stand atmbute the variability found in several 
stand attributes. 

Results of this effort indicated that many of the stand attributes evalu- 
ated were strongly correlated with the mean texture number of a forest 
stand, as calculated from HRV data (Table 7.1). Texture numbers of TM 
data‘ were not well correlated with stand attributes. An important finding 
was that for the mean tree size attributes and tree density relationships 
with texture were strong when only the dominant and codominant trees 
were considered. This is because trees in the understory layers are highly 
variable in size and number and, coincidentally, are not visible to the 
sensor. The tree size variability attributes, stand age, the CHD, and the 
SCI also were well correlated with HRV texture. 

These results supported our hypothesis that spatial algorithms using 10- 
meter data are useful, and that 30-meter data are not, for analysis of 
conifer canopy structure of forests in the region. We found further support 
for this from Woodcock and Strahler (1987), who state that the value of 
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TABLE 7.1 Value of correlation coefficients for the relationships of 
stand structural attributes and variables derived from the satellite 
data (texture of SPOT 10-m  HRV imagery, and the TM Tasseled Cap 
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brightness, greenness, and wetness axes) 
Stand attribute HRV texture Brightness Greenness Wetness 

DBH (mn, all) 
DBH (sd, all) 
DBH (mn, upper) 
CD (mn, all) 
CD (sd, all) 
CD (mn, upper) 
HGT (mn, all) 
HGT (sd, all) 
HGT (mn, upper) 
DNY (all) 
DNY (upper) 
BA (all) 
BA (upper) 
AGE 
SCI 
CHD 

0.55 
0.88 
0.88 
0.67 
0.72 
0.88' 
0.45 
0.88 
0.86 

-0.62 
-0.84 

0.73 
0.73 
0.87 
0.88 
0.75 

0.44 
0.53 
0.43 
0.33 
0.27 
0.42 
0.37 
0.30 
0.35 
0.49 
0.39 
0.53 
0.47 
0.55 
0.55 
0.53 

0.44 
0.55 
0.47 
0.35 
0.25 
0.27 
0.37 
0.42 
0.43 
0.5 1 
0.5 1 
0.52 
0.53 
0.63 
0.65 
0.54 

-0.60 
-0.87 
-0.87 
-0.69 
-0.67 
-0.88 
-0.5 1 
-0.81 
-0.85 
-0.69 

0.87 
-0.69 
-0.71 
-0.90 
-0.86 
-0.69 

Source: Adapted from Cohen and Spies 1992. 
DBH is tree diameter at breast height, CD is crown diameter, HGT is total tree height, 

DNY is tree density, BA is basal area, AGE is stand age, SCI is the Structural Complexity 
Index, CHD is the Canopy Height Diversity Index, mn is mean, sd is standard deviation, 
all is all trees in the forest stand, and upper is only trees in the dominant and codominant 
canopy positions. 

texture measures in image processing depends on whether image resolu- 
tion cells are smaller than the elements of interest in the scene. The basic 
element of interest in our study is the individual tree or, as viewed from 
above, the tree crown. In the young, simply structured Douglas-fir stands 
evaluated by us the dominant tree crown is approximately 5 meters in 
width, whereas in mature (moderately complex) and old-growth (com- 
plex) stands it is roughly 10 and 15-20 meters, respectively (Cohen et al. 
1990, Spies et al. 1990). Even though young closed-canopy stands have 
tree crowns that are subpixel size, the fact that more complex stands have 
numerous tree crowns that are at least as large as the pixels helps to 
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discriminate simply structured stands from more complex stands. Like- 
wise, because stands with moderately complex structures have tree crowns 
roughly equivalent in size to the image pixels and complex structured 
stands have crowns larger than one pixel, these two conditions also are 
distinguishable using textural measures of 10-meter data. With the 30- 
meter data at least two or three large trees generally appear in many pixels, 
severely diminishing the ability of TM texture to discriminate. 

Image Spectral Domain 

Remotely sensed images consist of pixels that contain data, in any number 
of bands, on the electromagnetic spectral properties of a ground scene. 
Analyses of image data that evaluate pixels irrespective of their neighbors 
operate solely in the spectral domain. Excluding radiometric and geo- 
metric preprocessing considerations, the common choices for such analy- 
ses are to work either with the unprocessed band data or to first create one 
or more vegetation indices (Perry and Lautenschlager 1984, Cohen 
1991a). The normalized difference vegetation index (NDVI) is by far the 
most commonly used. However, the NDVI does not take full advantage of 
the TM data, as it uses only two spectral bands. Nonetheless, a strong 
tendency exists by users of remotely sensed data to compute only the 
NDVI and then use it in further analyses. W h y  this has happened is not 
clear from the literature, but the reasons seem to be rooted in the fact that 
NDVI is simple to compute and exhibits a strong relationship with a 
number of vegetation characteristics (e.g., Tucker 1979, Ajai et al. 1983). 

Other indices that received a significant amount of attention in the 
early days of digital image analysis still continue to experience some, 
albeit relatively little, application. The Tasseled Cap brightness and green- 
ness indices are perhaps the most important of these (Kauth and Thomas 
1976). The Tasseled Cap was adapted to TM data by Crist and Cicone 
(1984) and an additional index, or axis, was defined. That axis has been 
called wetness (Crist et al. 1986). The TM Tasseled Cap indices were 
designed to take optimal advantage of the original six TM bands, and 
together these first three axes account for as much as 85 percent or more of 
the spectral information of a vegetated TM scene. 

Brightness is a weighted sum of the six reflectance bands of the TM 
imagery, and greenness is a contrast between the near-infrared band 
(TM4) and the three visible bands (TM1, TM2, and TM3). Use of the 
terms brightness and greenness is well accepted within the remote sensing 
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community, and there is a substantial body of literature suggesting that the 
names of these spectral features of TM data are consistent with the infor- 
mation they represent. Wetness is a contrast of the mid-infrared bands 
(TM5 and TM7) with the other four bands, and has been shown to 
correlate with the amount of moisture in a scene (Crist et al. 1986, Musick 
and Pelletier 1988, Cohen 1991a). Wetness has received little attention 
in an image processing framework. 

We turned to the Tasseled Cap set of spectral indices for evaluations of 
the TM spectral domain. This was done in concert with our analysis of the 
HRV texture data; thus, the same general methodology as described .ear- 
lier applies here as well. Results indicated that of the three Tasseled Cap 
indices, only wetness was strongly correlated with the stand attributes 
(Table 7.1, shown earlier). This was because brightness and greenness 
responded more to topographic variation than to stand condition, 
whereas wemess did not. The attributes most strongly correlated to wet- 
ness were generally the same as those for HRV texture. In fact, the relative 
strengths of the attribute relationships with HRV texture and TM wemess 
were generally consistent. This was somewhat surprising, as two appar- 
ently fundamentally different phenomena drive these image algorithms. 

As described earlier, our understanding of the relationships between 
HRV texture and stand structure was fairly sound; but we did not under- 
stand what structural phenomena were influencing wetness. Thus, we 
consulted the literature and collected ground radiometer data of individ- 
ual scene components (Cohen and Spies 1992). The radiometer we used 
was a Barnes Modular Multispectra: Radiometer (MMR) equipped with 
filters that replicate the six TM reflectance bands. In-situ reflectance 
measurements were obtained from canopies of the most prevalent tree 
species, for foliage of herbaceous and hardwood plant species commonly 
found in the western hemlock zone, and for deadwood, tree bark, soil, and 
epiphytic canopy lichens. Spectra of the same components were also 
collected in completely shaded conditions. 

The scant literature on the subject revealed that both theory and 
empirical evidence are in support of each other. In essence, wemess re- 
sponds to both the amount of water and shadows in the ground scene, 
with these relationships being positive. After giving this topic additional 
thought we discovered an apparent incongruency with respect to how we 
would expect the wemess index to respond to different types of canopy 
structures. In forest canopies the amount of "water-filled" foliage viewed 
by the sensor is closely linked to the degree of canopy shadowing. In 
general, the older and more complex the stand, the greater the proportion 
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of shadow present. Because the amount of shadow is greater in more 
complex stands, we can safely assume that the amount of foliage per unit 
area visible to the TM sensor is less in these stands than in closed-canopy 
stands with more simple structures. This is in fact true. Therefore, with 
increasing structural complexity, wetness should increase due to greater 
proportions of canopy shading; however, wetness should decrease due to 
less foliage being viewed by the sensor. It might appear that the effect of 
less water is dominant, since wetness clearly decreases with increasing 
structural complexity. In reality however, wemess values for young, simply 
structured sunlit Douglas-fir and western hemlock foliage and for shaded 
components are very similar (Cohen and Spies 1992), depriving this 
whole argument of practical significance. 

In Cohen and Spies (1992) we hypothesized that the controlling factor 
may be in part the amount of age-related canopy die-back, tree death, and 
increase in epiphytic lichen. This is based on the fact that with increasing 
age, individual tree crowns in the upper layers begin to die, thereby losing 
foliage and exposing bark and deadwood. At the same time, canopy li- 
chens begin to grow in increasingly greater amounts. The tops of many of 
the trees break, as others become snags. Cohen (1991b) demonstrated 
that woody and other nongreen plant materials have wemess values con- 
siderably lower than does green foliage. The same result can be inferred 
from Guyot et al. (1989) and Elvidge (1990). Our radiometer data from 
this study indicate that canopy lichen, bark, and deadwood have signifi- 
cantly lower wemess values than sunlit Douglas-fir and western hemlock 
foliage and all shaded components. Our hypothesis is further supported by 
evidence that the inner half-radius of an old Douglas-fir tree crown can be 
covered by as much as 75 percent canopy lichen, as viewed from above 
(Bruce McCune, pers. comm.). 

If our hypothesis for the response of wemess to vegetation senescence 
holds true, the question must be asked, “Is use of the term wemess appropri- 
ate?” Viewing a wemess image of a landscape containing distinct water 
bodies reveals that water is not the wettest feature. This alone is cause for 
dropping use of the term wemess and searching for an alternative, more 
appropriate name for this important spectral feature of TM data-one that 
is robust enough to describe a general vegetation condition, or process, 
across numerous ecosystem types. In Cohen and Spies (1992) we made the 
case for a term such as maturity index. Recently, we have noticed that 
stands not particularly aged in years but which exhibit structural charac- 
teristics similar to old-growth forest stands have wetness values like those 
of old stands. Such stands tend to grow on rocky, steep slopes that are drier 
and therefore prematurely age the forests growing on them. 
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Topographic Effects 

Effects of topography on image data are well documented, and several 
means exist with which to try to ameliorate their effects (e.g., Holben and 
Justice 1980, Justice et al. 1981, Ahern et al. 1987, Civco 1989, Colby 
1991). Most methods are designed to correct the image data by a cosine 
function to force an incident energy level that would exist if the sun’s 
position were normal to the surface (Smith et al. 1980). Although this 
methodology may be sufficient for some relatively simple vegetation struc- 
tures like a field of corn or wheat, it is generally inappropriate for forest 
canopies. This is because the interaction of solar angle, topographic posi- 
tion, and vegetation structure is completely ignored, and it can be this 
interaction that is most important. Alternative means for minimizing 
effects of topography are needed. One method is to capitalize on this 
interactive relationship by its explicit incorporation into a classification 
scheme (Eby 1987), or to use something like a geometric-optical re- 
flectance model (Li and Strahler 1985). Another method is to use al- 
gorithms that create new indices or images that do not exhibit strong 
topographic effects. Texture algorithms produce images that are generally 
insensitive to topography because local variability is evaluated rather than 
local means. Wetness images are not very sensitive to topography for at .  
least two probable reasons. 

First, the Tasseled Cap transformation is similar to a principal compo- 
nent analysis (PCA). As such, brighmess, the first axis, accounts for most 
of the spectral variability in the data. Likewise, the greenness, or second 
axis accounts for the next largest proportion of spectral variability. To- 
gether brighmess and greenness account for about 75 percent of the 
spectral variation in a TM image. As a topographic effect is so prominent 
in digital imagery, it tends to dominate the first two  PC, or Tasseled Cap, 
axes. The third axis is therefore “free” to reflect a different source of 
spectral variability. We believe this source is largely related to maturity of 
vegetation. 

The second probable reason we observed wemess to be insensitive to 
topography is likely that maturity in forested systems commonly causes 
changes visible in the upper canopy layers. As such, unless the topography 
is extremely steep so that the upper canopy layers are in almost total 
shadow, the tree crowns remain visible. Where there are topographic 
shadows wetness values should be high regardless of vegetation cover. 
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Current Research 

We now are faced with the opportunity to map forest attributes over large 
geographic areas in the PNW region, and to quantify change in the forest 
over the more than 20-year Landsat data record. This brings with it some 
additional challenges. 

For one, it would be best if we could have maximum flexibility for 
defining strata in the imagery. That is, we prefer to use an ecoregion 
(Omerlink and Gallant 1988) or some other concept to identify strata for 
image processing purposes; rather than having the strata be defined by 
image boundaries. For this, a method of radiometric rectification is 
needed. Radiometric rectification is used here to refer to some sort of 
normalization applied to image data to make multiple data sets more 
radiometrically compatible. Several options are available, but we are first 
testing a method developed by Hall et al. (1991a). This method 
“matches” digital numbers of each band of a subject image to those of a 
reference image. First, dark and bright radiometric control sets are se- 
lected from the reference and subject images in brightness-greenness 
space. The control sets are selected interactively by viewing images and 
highlighting potential control-set pixels in the images. Then, raw band- 
to-band linear transformations are developed from relationships between 
control sets of the subject and reference images, and the resultant linear 
transformations are applied to rectify each band of the subject image. 

When we attempted to apply the Hall et al. (1991a) methodology, we 
were immediately confronted with an unexpected challenge. Our 
brightness-greenness histograms had a considerably different shape than 
those illustrated in Hall et al. (1991a). Whereas their histograms had a 
distinctly triangular shape, our histograms had several “tails” making up 
the brightness axis or “leg” of an otherwise triangular shape. The dark end 
of the brightness axis was close to what we expected, but the bright end of 
this axis contained several bifurcations. This raised the issue of where to 
select control sets. 

After experimenting with control-set selection we found that the bifur- 
cation that most closely resembled the Hall et al. (1991a) brightness axis 
did not provide good results for our images. Rather we found that one or 
more bifurcations below the brightness axis (i.e., into negative greenness) 
gave better results. Because the bifurcation that worked best was variable, 
we could not consistently get the desired result simply by picking what 
appeared to be the best brightness control set. Thus, we found it necessary 
to select three to five candidate bright control sets and evaluate which 
worked best. Furthermore, we found that the control set that worked best 
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was band-dependent. In the final analysis, we decided to use the control 
set that worked best for a given band to rectify that band. This was 
determined from a combination of visual assessment and comparison of 
digital numbers from test sites of ground areas that overlapped in the 
subject and reference images. 

The correction is imperfect, but does provide significantly improved 
radiometric matching among images. This should permit us to make spa- 
tial mosaics of images and to do temporal analyses on spatially coincident 
images, without having to overly concern ourselves about differing radi- 
ometric properties. 

Another challenge is associated with change detection, which when 
done in a spatially explicit manner involves spatial overlay of two or more 
images from different dates (Hall et al. 1991b, Sader and Winne 1992). 
Three types of change detection algorithms are commonly used: (1) 
difference, (2) ratio, and ( 3 )  PCA. The difference and ratio algorithms 
require simply subtracting one image from another, or dividing one image 
by the other, respectively. These two algorithms are generally limited to 
comparison of two  images, and should give similar results except for how 
the resultant image is scaled. The PCA algorithm can be applied to any 
number of images, with each PC axis generally representing change be- 
tween two distinct time periods. Other algorithms have been applied but,’ 
to date, only in isolated situations. 

We have just begun to experiment with change detection, and thus we 
have nothing to report here. We are aware, however, that spatial mis- 
registration will cause erroneous results around “sharp” edges such as 
clearcut and forest boundaries. Initial experimentation reveals that we 
can filter these narrow boundaries out of the change image. 
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