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Several reports have indicated the stimulating
effect of fatty acid-containing materials on the
growth of ectomycorrhizal fungi. Growth of dif-
ferent ectomycorrhizal fungi can be stimulated
by lipids (Schisler and Volkoff, 1977; Fries et aI.,
1985), Tween 80 (Straatsma and Bruinsma, 1986),
or certain free fatty acids (Lindeberg and Lin-
deberg, 1974). Palmer and Hacskaylo (1970) re-
ported no growth stimulation using the synthetic
lipid triacetin, but this may have been the result
of acetate inhibition (Lindeberg and Lindeberg,
1974) or the inability to use acetate as a sole
carbon source.

Fatty acid esters are cleaved by enzymes, in-
cluding lipases (sensu stricto triacylglycerol acyl-
hydrolase, E.C. 3.1.1.3), which can release free
fatty acids from several sources, including lipids,
phospholipids, sterol esters, waxes, cutin, and
suberin. Although lipolytic activity, frequently
using Tween substrates, has been studied in var-
ious saprophytic fungi from diverse environ-
ments (Das et al., 1979; Egger, 1986; Gessner,
1980; Gochenaur, 1984; Zare-Maivan and
Shearer, 1988) and food materials (e.g., Roberts
et aI., 1987), few ectomycorrhizal fungi have been
examined.

Fungal strains (TABLEI) were obtained from
the USDA Forest Service, Pacific Northwest Re-
search Station, Corvallis, Oregon, RWU-4503
cuture collection, except for Hebeloma crustu/in-
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iforme which was provided by the USDA Agri-
cultural Research Service, Horticultural Crops
Research Laboratory, Corvallis, Oregon. All
strains were maintained on an ectomycorrhizal
basal medium (Pearson and Read, 1975) modi-
fied to reduce phosphate levels (Giltrap and Lew-
is, 1981) and increase Ca2+concentration (Sierra,
1957). The medium consisted of 109 glucose,
0.25 g ammonium tartrate, 0.4 g KH2P04, 0.5 g
MgS04'7H20, 0.1 g CaCI2'2H20, 50 mg yeast
extract, 5 mg ferric citrate, 5 mg MnS04'4H20,
4 mg ZnS04. 7H20, and 15 g agar (per liter dis-
tilled water). To detect fatty acid esterase pro-
duction, a supplement of 1%(v/v) of either Tween
20, 40, or 80 was added. The medium was ad-
justed to pH 5.5 and autoclaved (121 C, 15 min).
Plates were inoculated in duplicate or triplicate
with halves of a 5 mm plug cut from the margin
of an actively growing culture. Control plates of
fungi grown on medium without Tween added
were used to evaluate possible excretion of oxalic
acid that might cause a false-positive reaction.
Plates were incubated at room temperature for
up to 60 days and periodically examined for
growth and production of the characteristic halo
resulting from the pr~cipitation offatty acid-cal-
cium salts (Sierra, 1957).

Of 48 strains tested, 25 produced characteristic
calcium-fatty acid salt halos on one or more of
the three Tween substrates tested (TABLEI), with
17 detected on Tween 20, 25 on Tween 40, and
18 on Tween 80. In several cases, Tween inhib-



ited growth from the fungus inoculum plug onto
the agar medium, although absence of growth
did not always correspond to lack of fatty acid
esterase (e.g., Arcangeliella parva). Growth sup-
pression and lower frequency of esterase detec-

tion using Tween 20 was probably caused by the
increased toxicity of either the Cl2 fatty acid or
its Tween ester (Kabara, 1987). This suggests that
caution be exercised when using this substrate
alone in screening fatty acid esterase production
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TABLEI
REAcnON ONTWEENESTERSBYECTOMYCORRHIZALFUNGI

Habi- Reaction on Tweensb

Taxon Strain tat" 20 40 80

A/pova o/ivaceotinetus(Smith) Trappe 8245 (-) (-)
Areange/ie//aparva Thiers 9467 M (+) (+) +
Austrogautieriasp. 7873 M (-) (+) (+)
Byssoporiate"estris' Z30 W + + +
Cenococcumgeophi/um Fr. A145A
Chondrogastersp. 9833 M + + +
Cortinariusmagnive/atus (Morse)Thiers & Smith 9537 M + +
E/aphomyces sp. 8646 (-)
Endogone (immature) S566 (-) (-) (-)
Gautieriaeaudata (Harlen.)Zeller & Dodge 8481 M + + +
G. cf. graveo/ens 8724 M + + +
G. montieo/a Harkness AG-7 M + + +
Genabeaeerebriformis(Ha1en.)Trappe 6264 W (+) + +
Hebe/oma erustu/iniforme(Bull.ex. St. Am.) Quel. HECR2 (-)
Hydnangium carneum Wallroth 9831 (-)
Hymenogaster a/bus Berk. & Br. 9832 (-) (+) (-)
Hysterangium coriaceum Hesse AH-7 M + + +
H. erassirhaehisZeller & Dodge AH-6 M + + +
H. gardneriFischer 8405 M + + +
H. inflatum Fischer 9787 M (-) + +
Hysterangium sp. 4154 M + + +
Laccaria bie%r (Maire) Pat. S238 (-)
Leceinum seabrum (Bull.ex. Fr.) S. F. Gray 8967 (-) (+) (+)
Leucophe/psspinisporaFogel 7435 (-) (-) (-)
Me/anogastervariegatus(Vittadini) Tul. & Tul. 8222 (-) (-) (-)
Mycoamaranthus auriobisCastellano, Trappe & Malajczuk 4045 M + +
Paxillus invo/utus(Butsch: Fr.) Fr. 8969 (-)
Pi/oderma eroceum Erikks. & Hjortst 163 M + + +
Piso/ithus tinctorius (pers.) Coker & Couch S359
Radiigera atrog/ebaZeller 9470 W + + +
Rhizopogon c/avitisporusSmith 5412 (-) (-)
R. e%ssus Smith S548 (-) (-)
R. e//enaeSmith 8974
R. evadensSmith 8972 (-)
R. hawkeraeSmith A104 (-) (-)
R. occident/aisZeller & Dodge 7544 -
R. ochraceisporusSmith 9009 (-)
R. ochraceorubensSmith 7555 (-)
R. reaii Smith 8073
R. vinie%r Smith 7534
R. vulgaris(Vitt.) M. Lange A56
Sarcodonseabrosus(Fr.) Bourd. & Galz. 8727 (-)
Trieh%ma magnive/are(peck) Redhead 7088 - +
Tuber aestivum Vittadini 491 (-) +
T. borchiVittadini S211A (-) + (-)
T. uncinatum Chatin 5491 - +

"Habitat: M-forms mat structures; W-associated with decomposingwood.
b Reaction: (-) no growth, no esterase reaction; (+) no growth, but esterase positive reaction; - growth with

no esterase reaction; + growth with positive esterase reaction.
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(e.g., Hankin and Anagnostakis, 1975). Oxalate
production (precipitation of calcium oxalate
crystals) was not detected on any of the control
plates.

Most positive reactions seemed limited to a
distinct group of presumptive ectomycorrhiza1
fungi that form extensive hyphal or rhizomorph
mat structures in forest soils. Of particular in-
terest were the results for those ectomycorrhizal
fungi, Gautieria monticola, Hysterangium cori-
aceum, and H. crassirhachis, that produce these
mat structures in the upper soil layers of Doug-
las-fir forests in the Pacific Northwest. The mats
formed by these fungi and H. setchellii, which
was not available for inclusion in this survey, are
loci of significantly altered microbial activities
and soil chemistry (Cromack et al., 1979,1988;
Griffiths et aI., 1987, 1990; Sollins et aI., 1981).
Hysterangium gardneri forms mats in the litter
layer of Eucalyptus globulusplantations in north-
ern California, and H. inj/atum forms mats in
association with Eucalyptus in Australia. Isolates
of other mat-forming ectomycorrhizal fungi
strongly positive for hydrolysis of the Tween
additives included G. caudata, G. othii, Myco-
amaranthus auriobis, Piloderma croceum, and
unidentifiable species of Austrogautieria, Chon-
drogaster, and Hysterangium. Three ectomycor-
rhizal fungi frequently with decomposing wood,
Byssoporia terrestris, Genabea cerebriformis and
Radiigera atrogleba, also hydrolyzed all three
Tween additives.

Some isolates, not associated with mat for-
mation or decomposing wood, produced limited
reactions in the presence of Tween additives.
These included taxa that are considered late suc-
cessional fungi (Dighton and Mason, 1985), e.g.,
Leccinum scabrum and Tricholoma species.
Dighton and Mason (1985) have suggested such
fungi have higher energy demands than early suc-
cessional fungi (e.g., Hebeloma crustuliniforme)
and are able to use organic nutrient pools.

The capacity of ectomycorrhiza1 fungi to hy-
drolyze fatty acid esters has several potential
benefits. Assimilated fatty acids could be taken
up by the fungus and incorporated into new fun-
gal lipids or cleaved into acetate subunits by
P-oxidation and used either for energy or bio-
synthesis. Energy supplementation, in addition
to that normally provided by the host tree, could
be particularly important for those ectomycor-
rhiza1 fungi that form extensive mat structures
with peripheral mycelia distant from the root-
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fungus interface or for late successional fungi with
high energy requirements (Dighton and Mason,
1985). Alternatively, the acetate subunits or ace-
tyl CoA could be directed through different bio-
synthetic pathways (Garroway and Evans, 1984)
to produce a wide variety of cellular materials
as well as secondary metabolites.

Fatty acid esterases may also influence the
mineral nutrition of those mat-forming ecto-
mycorrhizal fungi in forests where accumulating
detritus ties up increasing quantities of nitrogen
and phosphorus in organic pools. While colo-
nizing fresh litter, the initial capacity to penetrate
or disrupt wax or suberin barriers would allow
hyphal or enzymatic access to otherwise occlud-
ed pools of organic nitrogen and phosphorus.
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