Projections of water, carbon, and nitrogen dynamics under future climate change in an old-growth Douglas-fir forest in the western Cascade Range using a biogeochemical model

Year: 
2019
Publications Type: 
Journal Article
Publication Number: 
5105
Citation: 

Dong, Zheng; Driscoll, Charles T.; Johnson, Sherri L.; Campbell, John L.; Pourmokhtarian, Afshin; Stoner, Anne M.K.; Hayhoe, Katharine. 2019. Projections of water, carbon, and nitrogen dynamics under future climate change in an old-growth Douglas-fir forest in the western Cascade Range using a biogeochemical model. Science of The Total Environment. 656: 608-624. doi:https://doi.org/10.1016/j.scitotenv.2018.11.377

Abstract: 

Statistically downscaled climate change scenarios from four General Circulation Models for two Representative Concentration Pathways (RCP) were applied as inputs to a biogeochemical model, PnET-BGC, to examine potential future dynamics of water, carbon, and nitrogen in an old-growth Douglas-fir forest in the western Cascade Range. Projections show 56% to 77% increases in stomatal conductance throughout the year from 1986–2010 to 2076–2100, and 65% to 104% increases in leaf carbon assimilation between October and June over the same period. However, future dynamics of water and carbon under the RCP scenarios are affected by a 49% to 86% reduction in foliar biomass resulting from severe air temperature and humidity stress to the forest in summer. Important implications of future decreases in foliar biomass include 1) 20% to 71% decreases in annual transpiration which increase soil moisture by 7% to 15% in summer and fall; 2) decreases in photosynthesis by 77% and soil organic matter by 62% under the high radiative forcing scenario; and 3) altered foliar and soil carbon to nitrogen stoichiometry. Potential carbon dioxide fertilization effects on vegetation are projected to 1) amplify decreases in transpiration by 4% to 9% and increases in soil moisture in summer and fall by 1% to 2%; and 2) alleviate decreases in photosynthesis by 4%; while 3) having negligible effects on the dynamics of nitrogen. Our projections suggest that future decrease in transpiration and moderate water holding capacity may mitigate soil moisture stress to the old-growth Douglas-fir forest. Future increases in nitrogen concentration in soil organic matter are projected to alleviate the decrease in net nitrogen mineralization despite a reduction in decomposition of soil organic matter by the end of the century.